ABSTRACT

Arbuscular Mycorrhiza Fungi (AMF) are known to mobilize the unavailable forms of soil nutrients into mobile forms enhancing nutrient uptake and growth of plants under stressed conditions. This study was conducted to assess the abundance and the diversity of AMF associated with vegetables grown conventionally in vegetable -vegetable/ potato cropping systems in Nuwaraeliya district and organically managed vegetable farms in Welimada, and to screen the best suited AMF inoculants for leeks under field conditions. Plant samples of each leeks, carrot and lettuce grown under each conventional field added with either poultry manure (PM) (n=5) or cattle manure (CM) (n=5) and organic fields (OM) (n=3) were collected along with rhizosphere soils. Fresh roots were assessed for AMF infection. Fresh or air dried soils were assessed for pH, total C, available N and P, total P and selective metals, and AMF spore abundance. Twenty different AMF spore types were multiplied using leeks as the host plant on a sand -coir dust medium. The infected roots of leeks and spores along with the growth medium were then introduced to a fresh medium and leeks seedlings were grown adding with liquid fertilizers. The best AMF inoculants for leeks were further screened in a soil medium by transplanting seedlings grown in nursery trays containing sand -coir dust medium and AMF inoculants. In all three pot experiments, three months - old plants were uprooted and biomasses were recorded root infections with AMF were assessed in the pot experiment with soil. Seedlings for the field experiment were raised in sand coir dust medium. One field experiment each under conventional and organic practices was conducted for leeks in Rahangala and Welimada, respectively. The plant shoot and root biomass, P, N, K and Mg uptake and AMF infections were assessed at harvest.

The available P and N contents of the rhizosphere soils of the conventional farms varied between 70 and 149 mg kg⁻¹ and between 109 and 208 mg kg⁻¹, respectively. The mean total P varied from 239 to 555 mg kg⁻¹ soil in rhizosphere soils and significant differences were observed between PM, CM and GM added fields in rhizosphere soils of leeks and carrots. The AMF infection remained above 50% in all three crops and significantly higher infections were observed for leeks and carrots grown in organically managed fields than the respective plants grown in conventional fields. The AMF infection in the conventional fields negatively correlated with available P, total P and positively with NH4⁺. About 22 spore types

were isolated from the conventional fields whereas only six predominant ecotypes were observed in the organic farm. In pot culture, spore types C, '12' and '17' have shown above 72% increase in shoot fresh weight in comparison to the non-inoculated plants and infection rates were also increased from 40% to 97%.

In the field experiment, leeks inoculated with AMF and grown with conventional practice showed about 100% root infection, significant increase in the uptake of P, N and Mg and 43-110% yield increase over the non-inoculated treatment with recommended fertilizer. AMF infection rates correlated positively with shoot and root biomass and N and Mg concentrations in shoots but not with P. The same positive impacts of AMF inoculants were observed in the organically managed fields on yield (36-171% increase) with significant increases in the P, N, K and Mg concentrations in the shoot. Spore types 8 and 12 of conventional farms and one from organic fields ('C') performed best in the conventional field whereas spore type 17 and 'C' performed best in the organic farm. Results revealed that application of best performed AMF ecotypes is a viable option to mobilize reserved forms of nutrients, particularly P and Mg in studied soils and increase yields of leeks.

Keywords : Animal Manure, Arbuscular Mycorrhiza Fungi, AMF inoculants, Leeks, Magnesium, Nitrogen, Phosphorus, Potassium

ACKNOWLEDGEMENTS

Firstly, I express my sincere gratitude to my supervisor, Prof. R. M. C. P. Rajapaksha, Dept. of Soil Science, Faculty of Agriculture, University of Peradeniya for guiding and motivating me with patience during conducting the research and writing thesis. Also I wish to express my sincere thanks to co-supervisor, Dr. J. D. H. Wijewardana for his advice and particularly for his time spend on correcting my thesis. I wish to gratefully acknowledge the National Science Foundation for providing funds to carry out the experiment.

My sincere thanks also goes to the Head and academic and non- academic staff of Department of Soil Science, Faculty of Agriculture, University of Peradeniya and the Post Graduate Institute of Agriculture for provided all the laboratory and other facilities to complete my work successfully. Without they precious support it would not be possible to conduct this research.

Although I wish to thank Mr. S. Kodikara and his staff of Agriculture Research Station of the Department of Agriculture and Mr. Athula Priyantha andhis staff of "Mihimadala farm" at Welimada for their invaluable support in conducting the field experiment. I am also thankful to Mr. Susantha Ekanayaka, Ms. Chathuri Subasihini, Ms. Madusha Dissanayaka, Ms Ernadi Priyadarshani and Ms.Kaushalya Marasingha for their friendly support given in various ways during the research.

TABLE OF CONTENTS

AB	STRACT		i
AC	KNOWLI	EDGEMENT	iii
TAI	BLE OF C	CONTENT	iv
LIS	T OF TAI	BLES	ix
LIS	T OF FIG	URES	х
LIS	T OF PLA	ATES	xi
CH	APTER 1		
	RODUC	ΓΙΟΝ	1
CH	APTER 2		
LIT	ERATUR	E REVIEW	6
2.1	Divers	se forms of mycorrhizae	6
2.2	Evolu	tion of AMF	7
2.3	Classi	fication of AMF	8
	2.3.1.	Classification based on morphology of hyphae, hyphal	
		organs and spores	8
	2.3.2	Classification based on the morphology of spore	9
	2.3.3	Classification based on molecular and other technologies	10
2.4	Arbuscu	lar Mycorrhizae fungal Infection and endorhizosphere growth	
	2.4.1	Pre – symbiotic growth of AMF	12
	2.4.2	Plant root colonization	13
2.5	Environ	nental Factors controlling AMF abundance and infection	14
	2.5.1	Crop rotation	15
	2.5.2	Soil P availability	15
	2.5.3	Soil tillage	16
	2.5.3	Toxic substances	16
	2.5.4	Soil moisture and salinity	17

2.6. Benefits and costs of symbiosis		17
2.6.1. Benefits of AMF infection		18
2.6.1.1 Infl	uence on plant phosphorus acquisition	19
2.6.1.2 Infl	uence on plant nitrogen nutrition	20
2.6.2 Other bene	fits	20
2.6 Production techniques of AMF inoculants		21
2.7 Crop response to AMF inoculants		22
2.8 Vegetable grown area of Upcountry in Sri Lanka.		23

CHAPTER 3

MATERIALS AND METHODS 3.1 Soil and plant sample collection 26 3.1.1 Site Description and agronomic practices 26 3.1.2 Soil and plant sample collection 27 28 3.2 Soil analysis 29 3.2.1. Soil pH 3.2.2 Soil organic matter 29 29 3.2.3 Available phosphorus content 3.2.4. Total phosphorus content 30 3.2.5. Available nitrogen 30 30 3.2.6. Selective heavy metal contents 3.2.7. Phosphorus fractionation of soil samples of leeks seedlings 31 32 3.3 Assessing AM fungi infection in roots 3.4 AMF spore isolation and characterization 32 3.5 Pot experiments 33 3.5.1 Pot experiment with soilless growth medium 33 3.5.1.1 AMF infection and growth parameters assessed 34 35 3.5.2 Pot experiment with soil medium 3.5.2.1 AMF infection and growth parameters assessed 36

3.6 Field experiments	36
3.6.1. Experimental setup -conventional farm at Rahangala	36
3.6.2 Experimental setup for organic farm - Welimada	37
3.6.3 Plant and soil parameters assessed	38
3.7 Statistical analysis	39
4. RESULTS AND DISCUSSION	
4.1 Abundance and diversity of arbuscular mycorrhizae associated with	
rhizosphere of leeks, carrots and lettuce	40
4.1.1 Properties of the rhizosphere soil samples collected from	
farmer fields	40
4.1.2 Infection of arbuscular mycorhizae (AMF) in leeks, carrots and lettue	ce
seedlings grown under intensive and organic management practices 4.1.3 Abundance of AMF associated with leeks grown under conventiona	
and organic practices	51
4.2 Growth performances of leeks inoculated with AMF spores under controlled	
conditions	57
4.2.1 AMF multiplication study on soilless growth medium	57
4.2.1.1 Study 01	57
4.2.1.2 Study 02	58
4.3 Evaluation of AMF inoculants in pot experiment with soil medium	59
4.3.1 Effect of AMF inoculants on the infection of leek seedlings	59
4.3.2 Effect of AMF inoculants on the growth of leeks seedlings in soil medium	61
4.4 Effect of AMF inoculation on the growth of leeks in conventional fields	63
4.4.1 Nutrient contents in the rhizosphere soils	63
4.4.2 Infection of AMF of leeks seedlings in conventional fields	65
4.4.3 Nutrient uptake	66
4.4.4 Growth and yield of leeks	70

4.5	Effect of AMF inoculation on the growth of leeks in organic farm	73
	4.5.1 Nutrient contents in the rhizosphere soils	74
	4.5.2 Infection of AMF	75
	4.5.3 Nutrient uptake	77
	4.5.4 Growth and Yield of Leeks	80
4.6. Impact of AMF on growth and yield of leeks under field conditions		83
СНА	PTER 5	
-	ICLUSIONS	87
REF	ERENCES	89

LIST OF TABLES

Table 3.1:	Description of the treatments in the pot experiment –soil medium	35
Table 3.2:	Description of the treatments in the field experiment	37
Table 3.3:	Inorganic fertilizer application for the field experiment	37
Table 4.1:	pH, organic C, available N and P, and total P concentrations of	42
	rhizosphere soils of leeks, carrot and lettuce grown under	
Table 4.2:	Fractions of inorganic and organic P present in the different extraction	45
	of rhizosphere soils of leeks	
Table 4.3:	Total Zn, Cu and Cd concentration of rhizosphere soils of leeks,	47
	carrot and lettuce collected from fields under conventional and	
	organic practices	
Table 4.4:	Percentages of AMF infection in roots of leeks, carrots and lettuce	49
	grown under conventional and organic systems	
Table 4.5:	Correlations between infection of AMF and selected nutrient	50
	concentration in rhizosphere soils of crops grown under three	
	management practices	
Table 4. 6:	Correlations for P fractions and AMF infection in leeks grown in	52
	conventional fields $(n = 8)$.	
Table 4.7:	Predominant spore types in conventional and organically managed	54
	farms and their germination in the presence of Cd and carbofuran	
Table 4.8:	Percentage infection of hyphae, arbuscules and vesicles by AMF in	59

leeks roots grown with and without inoculants

Table 4.9:	Soil pH, available P, NH_4^+ -N and NO_3^- -N of rhizosphere	63
	soil of the leeks grown under intensive practices at harvest	
Table 4. 10:	Shoot concentrations and total uptake of P and N in leeks as	67
	affectedby AMF inoculants under conventional conditions	
Table 4.11:	Shoot concentrations and total shoot uptake of K and Mg as	69
	affected by AMF inoculants under conventional conditions	
Table 4.12:	Soil pH, available P, NH_4^+ -N and NO_3^- -N of rhizosphere soil	73
	of the leeks grown under organic practices at harvest	
Table 4. 13:	Concentrations and total uptake of nutrient contents of P and	76
	N in shoots as affected by AMF inoculants under organic	
	practices	
Table 4.14:	Shoot concentrations and total shoot uptake of K and Mg as	77
	affected by AMF inoculants under organic practices	
Table 4. 15:	Correlations between infection of AMF, selected soil properties and	81
	tissue nutrient content with plant growth under conventional	
	practices	

Table 4.16:Correlations between infection of AMF, selected soil properties and82tissue nutrient content with plant growth under organic practices

LIST OF FIGURES

Figure 2.1:	Classification of Glomeromycota based on morphology 1	
Figure 2.2:	Phylogenetic tree of the Glom ales-molecular analysiss of	11
	18rDNA Sequences	
Figure 4.1:	Shoot and root dry weights of leeks plants grown in coir dust	57
	medium – study 01	
Figure 4.2:	Shoot and root dry weights of leeks plants grown in coir dust mediu	58
	study 02	
Figure 4.3:	Shoot and root dry weights of leeks plants grown in soil	61
	containing medium	
Figure 4.4:	AMF Infection of leeks with AMF inoculation under	64
	conventional farming systems	
Figure 4.5:	Girth and height measurement of leeks seedlings after 10 and 12	69
	wks	
Figure 4.6:	Shoot and root fresh weights of leek plants with AMF inoculation u	70
	conventional practices	
Figure 4.7:	Shoot and root dry weights of leek plants with AMF inoculation	71
	under conventional practices	
Figure 4.8:	AMF Infection of leeks with AMF inoculation under organic	74
	conventional farming systems	
Figure 4.9:	Shoot and root fresh weights of leek plants with AMF inoculation	79
	under organic practices	
Figure 4.10:	Shoot and root dry weights of leek plants with AMF inoculation	79

under organic practices

LIST OF PLATES

 Plate 2.1 : Plate 2.1- Root of a leeks seedling infected by AMF hypae,

 arbuscules and vesicles
 09

Plate 4.1 : AMF spore types isolated from conventional farms (8 - 18) and organic farm

(A-F) 57