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ABSTRACT: This study was conducted to explore performances of multivariate 
geostatistical techniques, co-kriging and regression kriging in contrast to univariate ordinary 
kriging, to generate detailed maps of soil texture by using proximally sensed apparent 
electrical conductivity (ECa) as secondary information. The survey of ECa (n = 21110) was 
conducted in a paddy tract (2.5 ha) located in Kurunegala, Sri Lanka using DUALEM-1S 
proximal soil sensor. Twenty-five soil samples were collected on the basis of conditioned 
Latin hypercube sampling approach. Soil texture was determined using pipette method. 
Additive log transformed sand and clay values were used to produce soil texture maps using 
multivariate co-kriging, regression kriging and univariate ordinary kriging. Data ranges of 
clay (3.3 – 19.5%) and sand (62.5 – 90.1%) showed a considerable variability within the 
study area. Correlation analysis revealed a strong relationship of clay% with horizontal (r = 
0.86) and perpendicular (r = 0.89) coplanar ECa and their geometric mean (r = 0.89). Sand % 
showed strong negative relationships with horizontal (r = -0.89) and perpendicular (r = -0.89) 
coplanar ECa and their geometric mean (r = 0.90). Second order polynomial regression 
models were best fitted for the prediction of clay (R2 = 0.83), and sand (R2 = 0.83) and these 
relationships were used for regression kriging. Prediction accuracies of geostatistical 
approaches were investigated by leave-one-out cross validation procedure and estimation of 
mean error, mean absolute error and root mean square error. Detailed maps             
     ) of clay and sand generated using co-kriging, regression kriging and ordinary 
kriging showed similar spatial patterns. However, multivariate geostatistical techniques 
produced more accurate detailed soil texture maps. Further, the comparison of mean error, 
mean absolute error and root mean square error values of three different interpolation 
techniques indicated that regression kriging produced the most accurate soil texture maps. 
This study emphasizes the high potential and robustness of regression kriging combined with 
proximally sensed apparent electrical conductivity to create high accurate detailed texture 
maps in efficient and cost effective manners. 
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INTRODUCTION 
  
Detailed maps on different soil properties are essential for precision management of soils, 
process based land evaluation, land & water management, irrigation and drainage (Basayigit 
and Senol, 2008). With the advancement of technology, various computer based approaches 
of soil mapping have been evolved. These methods allow the fusion of many layers of 
secondary information such as proximally and remotely sensed soil information, and 
elevation to generate accurate soil maps. Secondary information are proxy data that strongly 
correlate with a target soil property such as soil texture, organic carbon or trace metals. 
Often, secondary information are available in high density. Thus, integration of secondary 
information with sparsely measured primary soil variables allows mapping of the latter in 
more detailed, accurately and in cost effective manner. 
 
Apparent electrical conductivity (ECa) is a secondary information which can be proximally 
sensed in cost effective manner. Proximal sensors such as DUALEM-1S and Geonics EM38 
usually provide large number of ECa measurements in a single survey. Although, ECa sensors 
primarily measures soil salinity, many studies have showed a strong correlation of ECa with 
soil texture (Saey et al., 2012), organic carbon, CEC  and soil moisture. Soil texture refers to 
relative proportions of sand (0.05 – 2 mm), silt (0.002 – 0.05 mm) and clay (<0.002 mm) 
particles in soil. Soil texture determines many soil functions such as cation exchange, 
nutrient and water retention (Kumaragamage and Kendaragama, 2010). Therefore, detailed 
maps of soil texture have been often used to delineate management zones and subsequent 
application of site-specific soil management practices. 
 
Co-kriging (CK) and Regression kriging (RK) are two multivariate geostatistical 
interpolation techniques used for handling of incorporate secondary soil information for 
mapping of primary soil information (Li and Heap, 2008). However, use of these 
multivariate interpolation techniques for the prediction of soil texture using ECa in tropical 
soils have been rarely investigated. This study was conducted to explore the performances of 
CK and RK in contrast to univariate ordinary kriging (OK) to generate accurate maps of soil 
texture in a paddy growing tropical soil.  
 
 

MATERIALS AND METHODS 
 
The study was carried out in 2.5 ha paddy tract at Makulana in Kurunegala district (Figure 1, 
central coordinates; 7° 27ʹ 15ʺ N, 80° 27ʹ 5ʺ E). The soil in this area belongs to the 
Kurunegala series (Typic Endoaqualf). The survey of ECa (n=10121) was carried out using 
DUALEM-1S (DUALEM Inc., 2012) proximal soil sensor. DUALEM-1S is an 
electromagnetic induction based proximal soil sensor consists of one vertically oriented 
transmitter coil and two receiver coils, each oriented vertically and horizontally. The 
transmitter coil is energized with an alternating current (9 kHz) forming a primary magnetic 
field around the transmitter coil which induces a comparable secondary magnetic field in the 
soil. This secondary magnetic field is superimposed by the primary magnetic field and the 
resultant magnetic field is measured by receiver coils (Saey et al., 2009). Thus, DUALEM-
1S proximal soil sensor measures two ECa measurements, horizontal geometry apparent 
electrical conductivity (ECaHCP) and perpendicular geometry apparent electrical 
conductivity (ECaPRP). Furthermore, ECaPRP and ECaHCP are sensitive to topsoil (0-75 
cm) and subsoil (75-150 cm) conductivities, respectively. Thus, the sensor provides 
simultaneous measurements of both topsoil and subsoil properties (DUALEM Inc., 2012). 
During the study, the sensor was mounted on a wooden sled and pulled along parallel lines 
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spaced at 2 m at an approximate speed of 3 km h-1 and measurements were recorded at one 
second interval.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Spatial distribution of measurement locations of ECa (n = 10121). 
 
Conditioned Latin hypercube sampling approach (Minasny and McBratney, 2006) was used 
to locate 25 soil sampling points representing spatial variability of proximally sensed 
ECaHCP and ECaPRP (Figure 2). Soil samples were taken from the depth of 0–30 cm using a 
gouge auger. Air-dried samples were passed through a 2 mm sieve to remove gravel fraction. 
Soil texture was determined using pipette method (Gee and Bauder, 2002). Exploratory data 
analysis was performed prior to the spatial analysis. In soil textural analysis, sand, silt and 
clay contents are presented as relative proportions. Such data are called as compositional 
data. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Spatial distribution of sample points in the study site  
 
Aitchison (1986) observed errors in predictions when such compositional data were directly 
used in spatial analysis. Therefore, additive log transformation (ALT) (Aitchison, 1986) was 
performed on sand, silt and clay contents using the following equation. (1) 

(1) 
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where,      ) is the ALT transformation of ith component of the compositional data (e.g. 
Sand) at location   .      ) and      ) are the ith and kth components of the composition at 
the same location. Moreover,  Pawlowsky-Glahn and Olea (2004) showed  that the choice of 
the kth  component does not influence analytical results (e.g. prediction results) of ALT 
transformed data. The total number of components in the composition is p.  
Additive log transformed values were back transformed by using generalized logistic 
transformation (Aitchison, 1986) using following equation.  
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where,      ) is the ALT back transformed value of      ) and      ) is ALT transformed 
value of ith component of composition.  
 
Semivariogram analysis was used to quantify the spatial structures of soil texture. 
Semivariogram was calculated using the following equation.  
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where,    )is the semivariance of the textural fraction z for lag distance h calculated using   
pairs of observations (    )) separated by lag distance h. The empirical semivariogram 
calculation was followed by fitting a theoretical semivariogram model. 
Ordinary kriging is a univariate geostatistical interpolation technique and it is often 
considered as the best linear unbiased predictor (BLUP). Ordinary kriging estimates a value 
of a textural fraction z at location    by:  
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where,      ) is the sum of the neighboring observed values    i)    
    )            with the weights    which were derived from the semivariogram by 
solving the OK system. The sum of the weights were set to one in order to ensure an 
unbiased estimate and the prediction was optimized by minimizing the expected error 
(Webster and Oliver, 1990).  

E      )     0)    
 

Correlation analysis was performed to explore relationships between texture data and 
ECaHCP, ECaPRP, and their mean (ECaM) and geometric mean (ECaGM). Highly correlated 
measurement was selected as the secondary variable for the prediction of soil textural 
fractions using CK and RK.  

Co-kriging is a multivariate interpolation technique which uses joint spatial structure (co-
regionalization) of primary (e.g. soil texture) and secondary variables (e.g. ECa) to make 
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optimal predictions. Thus, joint spatial structure was modeled by calculating cross 
variograms (Goovaerts, 1997).   

     )  
 

    )
∑{     )         )       )         )}
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where, N(h) is number of observation pairs within the lag distance h.      )      ) 
     )          ) are measured values of primary and secondary variables    and    at 
two points separated by a lag distance h. Variograms of individual soil properties and the 
corresponding cross variograms were modeled jointly as described by Carroll and Oliver 
(2005) under the constraint of positive semi-definiteness of co-regionalization matrices. Co-
kriging makes predictions of the primary variable    using the following equation: 
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where,   

    ) is the estimate of   at location          ) is the value of primary variable 
at   

th location.   (  ) is the value of secondary variable at    
th location.   and    are CK 

weights. Co-kriging weights are calculated by a system of equations identical to that of OK 
(Issaaks and Srivastava, 1989). Ordinary CK algorithm calculates weights subjecting to 
following two unbiasedness conditions:  
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Regression kriging is a spatial extension of ordinary least square regression (OLS) which 
accounts for the spatial structure of residuals to make accurate predictions (Sun et al., 2010). 
In RK algorithm, soil property at unvisited location is predicted by summing the predicted 
drift and residual  (Odeh et al., 1994).     
 

     )       )       ) 
 
where,      ) is the fitted drift and      )is the interpolated residual. The drift      ) was 
modeled using OLS regression of soil texture and ECa and the residuals      ) were 
interpolated using simple kriging with expected value 0 (Hengl et al., 2007).  
The accuracies of predictions were assessed by leave one out cross validation procedure. 
Thus, validation indices root mean square error (RMSE), mean error (ME) and mean 
absolute error (MAE) calculated using following equations:  
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where,      ) and     ) are interpolated and measured values, respectively at the location xi. 
The number of validation data points is denoted by n (n=25). In these calculations, texture 
data obtained from laboratory analysis and predicted data value in cross validation results are 
considered to be measure values and interpolated values.  
The relative improvement (RI) of texture maps generated through multivariate kriging 
techniques (CK and RK) was calculated over univariate OK using the following equation.  
  

   
               )

     

 

 
where,       and       are root means square error for univariate ordinary kriging and a 
given multivariate (CK or RK) method, respectively. 

 
 

RESULTS AND DISCUSSION 
 
Variability of soil texture and ECa 

 
Apparent electrical conductivity survey followed by exploratory data analysis resulted in 
10121 data points of each of ECaHCP and ECaPRP. Descriptive statistics of proximally 
sensed ECaHCP, ECaPRP, ECaGM and laboratory measured clay and sand are given in the 
Table 1. Coefficient of variations (CVs) of both ECa measurements showed moderate level of  
variability according to CV classification of Warrick and Nielsen (1980).  
The coefficient of skewness values indicated that all data distributions are positively skewed 
(skewness > 0). Moreover, coefficient of kurtosis for ECaHCP distribution indicated that 
ECaHCP distribution is slightly platykurtic. Distributions of ECaPRP and ECaGM were 
leptokurtic (kurtosis > 0). Average values of ECaHCP and ECaPRP indicated comparatively 
higher conductivity of the subsurface soil. Moreover, CV values of ECaHCP and ECaPRP 
reflected comparatively heterogeneous surface soil. 
Positively skewed data distribution was observed for clay measurements. However, the 
distribution of sand was negatively skewed. Coefficients of kurtosis of both clay and sand 
distributions showed leptokurtic nature that deviates from the normal distribution. Average 
clay and sand contents were 7.1% and 83.5 %, respectively. According to Warrick and 
Nielsen (1980), clay data showed a high spatial variability (CV > 60%) whereas sand data 
showed low variability (CV< 12%). 
 
Table 1. Descriptive statistics of proximally sensed ECa and soil textural fractions 
 
Variable  n Min Max. Mean SD CV % Skewness Kurtosis 

ECaHCP 10121 5.7 84.9 37.03 13.3 35.9 0.767 -0.110 

ECaPRP 10121 1.1 73.2 20.9 11.9 56.9 1.176 0.877 

ECaGM 10121 3.5 78.8 27.7 12.7 45.8 0.024 0.049 

Clay% 25 3.3 19.5 7.1 4.4 61.9 1.858 2.837 

Sand% 25 62.5 90.1 83.5 7.0 8.4 -2.054 3.932 

n = umber of observations, Min. = Minimum, Max. = Maximum, SD = Standard deviation, CV = Coefficient of 
variation 
 

(12) 

(14) 
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The Pearson’s correlation coefficient (r) between soil textural fractions and ECa are given in 
the Table 2.  Correlation coefficient indicates the strength of the linear relationship between 
two variables (Mukaka, 2012). Mason et al. (1983) stated that range of r between 0.68 and 1 
indicates a very strong linear relationship between two variables. Thus, the correlation 
between proximally sensed ECa and texture was very strong.  
 
Table 2. The correlations between soil texture and proximally sensed ECa  

 
Variable ECaHCP ECaPRP ECaGM GMECa 

Clay 0.86 0.89 
 

0.89 
 

0.89 
 

Sand 
 
Silt  

-0.89 
 
0.79 

-0.89 
 
0.76 
 

-0.90 
 
0.79 
 

-0.89 
 
0.79 
 

ECaHCP = Horizontal apparent electrical conductivity, ECaPRP = Perpendicular coplanar apparent electrical 
conductivity, ECaM = Mean of ECaHCP and ECaPRP, ECaGM = Geometric mean of ECaHCP and ECaPRP 

A strong positive correlation was observed between clay and ECa. Studies have revealed that 
the negative charge of clay particles and its high water retention as reasons for positive 
relationship between clay and ECa ( Rhoades et al., 1999). Sand particles behave opposite 
manner resulting in a negative correlation between sand and ECa. The highest correlation of 
textural fractions was observed with ECaGM. Thus, ECaGM was used as secondary 
information when preparing detailed soil maps using CK and RK. 

Regression kriging, ordinary kriging and co-kriging of soil texture 

Scatter plots showing the relationship between clay and ECaGM and sand and ECaGM are 
provided in Figure 3a and 3b, respectively. Second order polynomial models were best fitted 
for the prediction of clay (R2 = 0.83, equation 15) and sand (R2 = 0.83, equation 16) by 
ECaGM.  

 
                  )              )            

  

                    )              )        

 

 

 

 

 

 

 

Figure 3. Scatter plot of (a) clay and ECaGM and (b) sand and ECaGM and fitted 
polynomial prediction models 

(13) 

(14) 

(15) 

(16) 
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The Empirical variograms of ALT transformed residual clay% and sand% are shown in 
Figure 4a and 4b, respectively. Both variograms were best fitted with spherical model. The 
relative nugget effect (RNE) (ratio of the nugget to sill) indicates the proportion of spatially 
unstructured variation in relation to total variation (Vitharana, 2008). According to the 
classification of  RNE proposed by Cambardella et al. (1994), RNEs ranging from 0% to 
25% and 25% to 75% indicate a strongly and moderately structured spatial dependencies, 
respectively. Thus, residual variograms of ALT transformed residuals of clay% (RNE = 
33%) and sand% (RNE = 61%) showed moderately structured spatial variability. Empirical 
Variograms of ALT transformed clay and sand are shown in Figure 5a and 5b, respectively. 
Both variograms were best fitted with spherical models. Bijanzadeh et al. (2014)  have also 
shown that empirical semivariogram of many chemical and physical properties of soil are 
often fitted with spherical models and rarely with exponential models. RNE values of 
modeled variograms of clay (RNE = 3.7 %) and sand (RNE = 4.2 %) reflected a moderately 
structured spatial variability. 

 

 

  

  

 

Figure 4.  Variograms of ALT transformed (a) residual clay% and (b) residual sand% 

Cross variography is an important step in CK interpolation which quantifies the co-
regionalisation between primary and secondary variable. Both cross variograms were fitted 
with spherical model (Figure 5c and 5d). 

 

 

 

 

 

 

 

 

 

Figure 5. Variograms of additive log transformed (a) clay and (b) sand, cross 
variograms of additive log transformed (c) clay & (d) sand with ECaGM 

 
However, cross variograms of ECaGM and ALT transformed sand showed a negative 
spherical shape (Figure 5d). Negative semi variance values indicate a positive increase of one 
variable over distance h corresponds with a decrease of the other variable over the same 
distance (Rossi et al., 1996). 

(a) (b) 

(c) (d) 

(a) (b) 
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(a) (b) (c) 

Maps of soil clay prepared by OK, CK and RK are provided in Figure 6a, 6b and 6c, 
respectively. All interpolation techniques showed the same general pattern of spatial 
variability of clay across the study filed. Clay maps showed a distribution of high clay 
content (15-18%) in the northern part of the study field. The northern area of the field lies on 
the lower position of the landscape. Therefore, it can be stated that long-term translocation of 
clay particles from higher positions of landscape to lower position by soil erosion have 
resulted high clay content in northern part of the study field. Babalola et al. (2007) have also 
found comparatively higher clay contents at foot slopes of a typical catena resulted by 
erosion-sedimentation processes.  

 
 

 

 

 

 

 

 

 

Figure 6. Spatial distribution of clay% prepared by (a) ordinary kriging, (b) co-kriging 
and (c) regression kriging 

 
Maps of sand prepared by OK, CK and RK showed a similar spatial distributions (Figure 7a 
to 7c) which opposite to that of clay. Texture maps generated using OK showed less detailed 
patterns depicting the average spatial variability of the field (Figure 6a and 7a). In contrast, 
maps generated using RK and CK showed the spatial variability in detail (Figure 6b, 6c and 
7b, 7c) that suits for site specific soil management through precision agricultural approaches.  

 

 

  

 

 

 

 

 
 
Figure7. Spatial distribution of sand% prepared by (a) ordinary kriging, (b) co-

kriging and (c) regression kriging 
 

(a) (b) (c) 
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Results of the cross validation of OK, CK and RK are summarized in Figure 8. Mean error 
computes the average bias of prediction and a value nearing zero is desired for accurate 
mapping (Isaaks and Srivastava, 1989). The lowest MEs for the prediction of clay (-0.13) 
and sand (0.24) were found for RK multivariate interpolation method. This was followed by 
OK (clay = -0.32, sand = 0.52) and CK (clay = 4.96, sand = -4.02).  
 
 
 
 
 

 

 

 

 

 

Figure 8. Results of cross validation of (a) Mean Error, (b) Mean Absolute Error and 
(c) Root mean square error of texture maps prepared by ordinary kriging 
(OK), cokriging (CK) and regression kriging (RK) 

Mean absolute error  (Nalder and Wein, 1998) and RMSE are measures of the magnitude of 
prediction error (Hernandez-Stefanoni and Ponce-Hernandez, 2006).  However, MAE is less 
sensitive to outliers while RMSE is sensitive to outliers. Values of MAE and RMSE (Figure 
8b and 8c) revealed a superior prediction accuracy of RK for clay (MAE = 1.22, RMSE = 
1.73) and sand (MAE = 1.95, RMSE = 2.80) in comparison to the OK and CK. We observed 
very poor prediction accuracy of CK. Goovaerts (1997) has shown two intrinsic limitations 
of CK; some of the weights can take negative values, thus increasing the risk of getting 
unacceptable estimates and, often weights tend to be small, thus reducing the influence of the 
secondary data (Li and Heap, 2008). However, previous studies have revealed better 
accuracy of CK in comparison to univariate OK.  
 
Regression kriging by combing 25 clay content measurements and 10121 ECa measurements 
has resulted 30% improvement of prediction accuracy in comparison to the univariate OK. 
However, accuracy improvement for the mapping of sand was 2.5%. Several studies (Odeh 
et al., 1994; Goovaerts, 1999; Bishop and McBratney, 2001) have also revealed that 
combination of kriging and correlation with secondary information data outperformed OK 
and CK. 
 
 

CONCLUSIONS 
 
This study explores the usability of multivariate geostatistical methods for detailed mapping 
of soil texture in a paddy grown soil of Kurunegala series.  A considerable variability of soil 
texture exists in the study area. Variograms analysis revealed a structured spatial variability 
of soil texture. Thus, detailed mapping of soil texture will be of importance for the site 
specific management of the studied paddy grown soils of Kurunegala series. The correlation 
and regression analysis revealed that proximal sensed ECa is a very strong predictor 
(secondary information) for detailed mapping of soil texture. Comparison of OK, CK and 

OK CK RK OK CK RK OK CK RK 

(a
) 

(b) (c) 
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RK revealed that RK is the best multivariate geostatitical approach to predict soil texture 
using densely measured proximally sensed ECa. 
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