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ABSTRACT: Short-scale spatial variability of soil properties need to be identified for the 

proper management of soil resources for crop production. Proximally sensing of soil 

apparent electrical conductivity (ECa) and the application of inversion technique are highly 

potential approaches to predict the spatial variability of soil properties. This study was 

carried out to investigate the applicability of ECa data together with inversion technique to 

predict the spatial variability of soil variability in Calcic Red Latosols. DUALEM-1S sensor 

was used to perform the ECa survey in an agricultural land (3.2 ha) situated in Allaveddy in 

the Jaffna district. The acquired ECa data were used to predict ECa at 20 cm depth 

increments down to 80 cm soil depth. Exploratory data analyses and then local kriging 

procedure were applied separately for original and inverted ECa data to construct 

continuous maps. Soil samples were taken from six sample points (at 20 cm depth intervals 

upto 80 cm from each sample point) using the purposive sampling scheme. Soil samples were 

analyzed for soil texture, organic matter, electrical conductivity (EC) and pH. Proximally 

sensed ECaPRP (CV = 45.4%) and ECaHCP (CV = 73.5%) and the depth profiles of 

different soil properties showed a high vertical and horizontal spatial variability of soil in 

the site. High correlations were shown between EC (measured at different depths) and both 

ECaPRP (r >0.60) and ECaHCP (r >0.60) at different depths. However, ECa did not show 

strong correlations with other soil properties. The high correlations (r > 0.76) between 

depth specific inverted ECaPRP and ECaHCP measurements and measured EC of respective 

depths indicated that these ECa data layers can be used to map the soil salinity development 

in different soil layers. This study revealed a strong short-scale spatial variability of soil 

properties in the selected Calcic Red Latosol and proximal soil sensing using the DUALEM-

1S sensor is a highly potential tool for producing three dimensional maps of the soil EC. 

 

Keywords: Apparent electrical conductivity, proximal soil sensing, short-scale spatial 

variability 

 

 

INTRODUCTION 
 

The short-scale spatial variability of soil properties such as soil depth, soil texture and 

organic carbon is a common phenomenon. The variability of these soil properties influence 

the soil physical, chemical and biological processes those determine the plant growth.  

Importantly, soil variability in both, horizontal and vertical directions are equally important 

in deciding the suitability of a soil for plant growth and thus its management for optimal crop 
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production. Therefore, areas having unique combination of vertical patterns of soil properties 

would serve as uniform land units having different production potentials. Moreover, efficient 

use of agricultural inputs such as fertilizers and liming materials could be improved by 

changing the application rates site-specifically based on the variability of soil properties 

(Winehold and Doran, 2008). The traditional approach to investigate spatial variability of the 

soil properties is the soil spatial sampling and laboratory analyses followed by mapping, 

which require high inputs of labour, more time and money. The proximally sensed apparent 

electrical conductivity (ECa) can be considered as one of efficient, cost-effective and modern 

approaches to characterize the natural spatial patters of inherent soil properties (Lesch et al., 

1995). Proximal soil sensors are used for measuring ECa. Among the available methods, 

electromagnetic induction (EMI) based methods are becoming more popular among soil 

surveyors due to their non-destructive nature, rapid response and ease of integration into a 

mobile platform for obtaining on-the-go measurements. Although the proximally sensed ECa 

has been used as a reliable tool to predict the horizontal spatial variability of topsoil 

properties such as clay (Williams and Hoey, 1987), organic matter (Jaynes et al., 1996), ECe 

(Rhoades and Corwin, 1992) and CEC (McBride et al., 1990) etc., the patterns of ECa at 

deeper layers and its relationship with soil properties have been investigated very rarely due 

to the lack of suitable algorithms to extract ECa in deeper layers using inversion techniques 

(Santos et al., 2011). However, high potential of the EMI based ECa measurements to 

provide quantitative estimates of the subsoil ECa at different depths have been revealed 

through ECa data combined with the newly developed inversion techniques (Piikki et al., 

2013). EM4SOIL (EMTOMO LDA) is one such software used to invert the proximally 

sensed ECa acquired from proximal soil sensor (Triantafilis and Santos, 2013). The estimates 

of ECa are generated by the software for different depths and can be used as secondary 

information to predict the patterns of soil properties at respective depths. The potential of 

proximally sensed ECa data of soil of intermediate zone of Sri Lanka to predict the short-

scale spatial variability of the different topsoil properties (soil texture, available P, Ca, Mg, 

K, Na) has been investigated recently (Balasooriya et al., 2014; Rathnayaka et al., 2014), but 

the potential use of inverted ECa to predict subsoil properties has not been investigated so 

far. 

 

Red Latosol (Typic Ustipsamments) is the most dominant soil great group distributed in the 

Jaffna peninsula which is extensively used for the agriculture (Mapa et al., 2010). Except 

few studies (Ketheeshwaren, 2005) less attention has been given for the spatial 

characterization of red latosols. Moreover, potential of using novel technologies such as 

proximal soil sensing in spatial characterization of this soil have not been investigated for 

Red Latosols. The applicability of proximally sensed data to predict subsoil properties 

become a very important research area related to optimization of the efficient use of 

agricultural inputs. The objective of this study was to investigate the potential of using the 

proximal soil sensing technique for the characterization of short-scale soil variability of red 

latosol at different depth intervals. 

 

 

METHODOLOGY 

 

An agricultural field (3.2 ha) located at Allaveddy in Jaffna district of Sri Lanka (20 m 

elevation, 9° 47' 12.8" N, 80° 0' 32.21" E) was selected for the study (Figure 1). The study 

field is located in the upper position of the soil catena and Red Calcic Latosol is the 

dominant great soil group (Panabokke, 1996). Onion is the commonly cultivated crop in the 

selected agricultural field. 
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DUALEM-1S (Dualem Inc) proximal soil sensor was used to perform the ECa survey. It is 

one of very popular second generation EMI based proximal sensors which consists of one 

transmitter coil (Tx) and two receiver coils (Rx) spaced at 1 m. The transmitter coil and one 

of the receivers in the pair have horizontal coil windings and these components form the 

horizontal co-planar geometry (HCP). The other receiver in the pair has vertical coil 

windings. It combines with the transmitter to form the perpendicular coplanar geometry 

(PRP). The Tx is energized from an alternating current (9 kHz) and it produces a primary 

magnetic field around the Tx. This primary magnetic field induces small alternating current 

in the soil which induces a proportionate secondary magnetic field in the soil. This induced 

magnetic field is superimposed on the primary field and both are measured by two receiver 

coils (Saey et al., 2009). Thus, the DUALEM-1S soil sensor measures two ECa values as 

perpendicular coplanar ECa (ECaPRP) and horizontal coplanar ECa (ECaHCP) 

simultaneously. Perpendicular coplanar ECa is highly sensitive to the conductivity of the 

topsoil, whereas ECaHCP is highly sensitive to the conductivity of the subsoil (DUALEM-

1S user manual, 2012). Therefore, the sensor gives provision for the investigation of soil 

properties at both topsoil and subsoil. 

 

The DUALEM-1S was attached to a wooden sled and pulled at a speed approximately 3.5 

kmh
-1

 along parallel lines spaced at 2 m. The field computer attached to the sensor recorded 

ECa at 1 second time intervals. Thus, ECa measurements were taken at a density of 2 m x 

2m. Exploratory data analysis was performed separately for ECaHCP and ECaPRP 

measurements. Local kriging interpolation procedure was used to interpolate ECa data using 

VESPER 1.6 software. The local kriging process calculates variograms for each interpolation 

search window assuring a best liner interpolation of data measured at high density (Sun et 

al., 2010). The raster maps showing the spatial variability of ECaHCP and ECaPRP were 

developed using ArcGIS 10.3 software. The smaller area of the study field was selected for 

the investigation of the spatial patterns of the selected soil properties in relation to the ECa 

patterns. The sample points were spatially selected by adopting purposive sampling 

(Bianchini and Mallarino, 2002) approach (Figure1). Thus, comprehensive spatial 

representation ECa patterns was achieved. 

 

 

 

 

 

 

Fig. 1.  The location of study field in Sri Lankan map and the satellite image showing 

spatial distribution of study field boundary and sample points 

 

Soil samples were collected from each sample point at 20 cm depth increments down to 80 

cm depth. The samples were air-dried and passed through 2 mm sieve to separate gravel, and   

analyzed for the soil texture, soil organic matter, pH and EC. Soil texture determination was 
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done using the pipette method (Gee and Or, 2002). The procedure proposed by Walkley and 

Black (1934) was used for the determination of soil organic matter (OM%). Soil pH and EC 

of each soil sample were determined separately in 1:2.5 and 1:5 soil/water suspensions 

respectively, using an EC meter (Eutech COND 6+) and pH meter (Eutech pH 700) to 

measure EC and pH. 

 

The depth profiles of clay%, sand%, OM%, pH and EC developed for each sample point 

were used to investigate the vertical spatial variability of the selected soil properties. 

 

The depth response curves of the ECaHCP and ECaPRP models are provided in Figure 2 and 

these measurements provide values of ECa by integrating conductivities of thin layers of the 

soil. EM4SOIL inversion software (EMTOMO LDA) was used to invert ECaHCP and 

ECaPRP to obtain ECa of the soil depths of 20, 40, 60 and 80 cm. The exploratory data 

analysis was separately done for inverted ECa data set obtained for different depths. 

 

 

 

 

 

 

 

 

Fig. 2. The cumulative sensitivity in percentage of ECaPRP and ECaHCP for the 

different depths of soil 

 

Local kriging procedure was performed to interpolate ECa data estimated through inversion 

technique using VESPER 1.6 software. The interpolated ECa data, estimated through 

inversion were used to develop maps showing the spatial variability of ECa at different 

depths. ArcGIS 10.3 software was used to prepare maps. The ECa of each sample location at 

four depths were extracted from the corresponding interpolated maps using ArcGIS 10.3 

software. The applicability of the original and estimated ECa produced by inversion to 

predict the patterns of inherent soil properties were determined considering the correlations 

between measurements of different soil properties and respective original and inverted ECa 

data extracted from the sample location at different depth. 

 

 

 

 

 

 

 

 

 



Short-scale Spatial Variability of Calcic Red Latosol Soils  

 245

RESULTS AND DISCUSSION 

 

Variability of proximal sensor measured ECaHCP and ECaPRP 

 

The ECa surveys followed by exploratory data analysis resulted in 5884 ECaPRP and 5890 

ECaHCP point measurements. Table.1 shows the summary statistics of the apparent 

electrical conductivity (ECa) measured with DUALEM-1S sensor. 

 

ECaPRP measurements ranged from 6.1 mSm
-1

 to 67.7 mSm
-1

 with the mean of 25.07 mSm
-1

 

and the coefficient of variation (CV) of 45.35% while ECaHCP measurements ranged from  

-12.4 mSm
-1

 to 37.39 mSm
-1

 with the mean of 11.73 mSm
-1

 and the CV of 73.49%. 

Moreover, ECaPRP had moderate variability (between 12% and 60%) and ECaHCP had high 

variability (>60%) according to the classification of CV by Warrick and Nielsen (1980). The 

coefficients of skewness and kurtosis of each ECa data type indicate that both the 

distributions are positively skewed and platykurtic.   
 
DUALEM-1S sensor usually gives positive values as proximally sensed ECa values for soil. 

Apparent electrical conductivity measures the ability of solid and solution phases in soil to 

transmit an electrical current. The charged colloids such as clay and humic substances highly 

contribute to the ECa from soil solid phase, while dissolved ions contribute to ECa from soil 

solution phase (Ristolainen et al., 2009). The sensor provided negative values as proximally 

sensed ECaHCP for some locations. Moreover, those negative values were concentrated to 

five specific areas in the study field. The negative values for proximally sensed ECa for soil 

are usually resulted by the sensor when it is oriented perpendicular to a high conductive 

buried objects such as iron or steel in soil (Stanton and Schrader, 2001). Therefore, it 

revealed that the spatial variability of the conductivity of studied soil has been altered by the 

anthropogenic activities 

 

Table1. Statistical parameters of ECaHCP and ECaPRP measurements proximally 

sensed using DUALEM-1S sensor 

 

Variable N Min. Max. Mean SD CV Skewness Kurtosis 

ECaPRP(mSm-1) 5890 6.1 67.7 25.07 11.37 45.35 0.539 -0.119 

ECaHCP(mSm-1) 5884 -12.4 37.9 11.73 8.62 73.49 0.173 0.048 

 
Maps of both ECaPRP and ECaHCP, produced through local kriging procedure showed 

identifiable short-scale spatial variability in the study field (Figure 3). The pattern of 

ECaPRP and ECaHCP are different from each other implying differences in spatial 

variability of conductivity at topsoil and subsoil or vertical heterogeneity of soil 

conductivity. 
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a)                                                                                       b)   

 

 

 

 

 

 
 

 

 

Fig. 3. Maps showing the spatial variability of the proximally sensed (a) ECaPRP and 

(b) ECaHCP 

 

Variability of soil properties in vertical and horizontal directions 

The depth profiles developed for individual soil properties showed a vertical spatial 

variability of each sampling point (Figure 4a-4e). Depth profiles indicated considerable 

variability of all properties at different depth intervals. The surface soil clay content (0–20 

cm) ranged from 8% to 30% across sample points. This variability increased as the depth 

increases. According to the USDA classification, subsurface layers with a significantly 

higher percentage of phyllosillicate clay (1.2 times or more than clay percentage in elluvial 

horizon) overlying soil materials are known as argillic horizon (USDA survey staff, 2014). 

All the profiles showed the evidence of presence of argillic horizons. However, the argillic 

horizon occurring depth differs from one sample point to another. The clay profiles of 

sample locations 2, 5 and 6 showed a presence of argillic horizons at depth of 40-60 cm 

whereas, those of sample locations of 3 and 4 exhibited argillic horizons from 60 cm 

onwards upto 80cm or more. Moreover, the presence of argillic horizon of sample point 1 

could be seen from 20-60 cm. Huang et al. (2011) have showed some limitations to crop 

growth in the presence of argillic horizon such as poor drainage with purched water table and 

acting as a barrier to the root penetration. The main possible reason for increasing clay 

content at deeper layers is due to the translocation (elluviations) of clay particles from 

surface horizon and deposition in subsurface horizons (Kozlovskii et al., 2001). The profile 

diagrams (Figure 4a) showed variation of the elluviations and illuviation processes at six 

sample locations and consequently larger variability of clay content in deeper horizons.  The 

% OM content of the top soil layer ranged between 1.2–6.6% (Figure 4c). The depth profiles 

showed accumulation of OM in the surface layer. Rusco et al. (2001) stated that 

accumulation of OM mainly occurs in the surface horizon due the continuous input of plant 

biomass and high activity of soil microorganisms. 
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Fig. 4. The depth profiles of (a) clay%, (b) sand%, (c) OM%, (d) pH and (e) EC 

 

Soil pH (Figure 4d) showed a moderate variability within the surface soil (7.3–7.8). This did 

not change drastically along vertical direction of the soil. According to soil pH classification 

by Hornek et al. (2011), pH values of all the layers at each sample point were within the 

range of neutral or moderately alkaline. Calcic Red Latosol is a type of Red Latosol, 

developing on the marine sediments, near to the coastal area (Panabokke, 1996). Marine 

sediments are rich in CaCO3.Thus, the resultant Red Calcic Latosol soil is also composed of 

high amount of CaCO3. This would lead to an increase of soil pH throughout the soil profile. 

Soil EC of the surface soil (Figure 4e) showed a considerable variability (5-17.5 mSm
-1

). 

However, this variability narrowed at deeper soil layer (60-80 cm). All EC profiles except 

sampling points 5 and 6 showed small variation along the depth. The EC profiles of sample 
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point 5 and 6 showed large variation along the depth. The EC depth profiles of most of the 

sample locations showed comparatively higher values at surface soil layer and deeper soil 

layers, while lower EC in middle most layers. The water evaporation followed by 

accumulation of dissolved salts continuously at surface layer due to high temperature in the 

area, may be the reason for high EC in surface layer. The leaching of the dissolved salts from 

middle most layers to the deeper layers may be the reason for lower EC in deeper layers.  

 

Relationships between proximal sensed ECa and soil properties 

 

The measurements of ECaHCP and ECaPRP were highly correlated with the measured EC at 

different depths (Table 2). Moreover, EC measured at 0–20 cm, 20–40 cm and 40-60 cm 

showed stronger correlations with ECaPRP than ECaHCP. This proved a representation of 

the conductivity of surface and subsurface layers by ECaPRP measurement. The cumulative 

response curve of ECaPRP (Figure 2) shows that 75% of its response is attributed to the soil 

layer 0–60 cm. In contrast, soil EC measured at 60–80 cm showed a strong correlation with 

ECaHCP which is more sensitive for deeper soil layers (Table 2). However, most soil 

properties such as OM% (r < 0.59), pH (r < 0.33) and sand% (r > -0.59) showed poor to 

moderate correlations with both ECaPRP and ECaHCP. Proximally sensed ECa 

measurements have shown strong positive correlations with OM% (Jaynes et al., 1994), 

clay% (Williams and Hoey, 1987), CEC (McBride et al., 1990) in non-saline soil. In saline 

soils, ECa measurements have shown a strong positive correlation with the electrical 

conductivity of the soil solution (Rhoades and Corwin, 1992). Although, the selected field is 

not saline, the proximal sensed ECa showed a strong correlation with the EC of soil solution. 

Moreover, as indicated by Amexketa (2007), strong positive correlations between ECa 

measurement and other soil properties can be masked by the soil electrical conductivity 

being the major factor contributing to the measured ECa values.  

 

Table 2. Correlation coefficients of measured EC with ECa extracted from 

interpolated ECa maps (both ECaHCP and ECaPRP) and depth specific 

inverted ECa from corresponding interpolated inverted ECa maps at 

sampling point  

 

 EC measurements (mSm
-1

) 

 (0-20cm) (20-40cm) (40-60cm) (60-80cm) 

ECaPRP 0.724 0.848 0.596 0.728 

ECaHCP 0.601 0.792 0.592 0.770 

Depth specific inverted 0.809 0.913 0.762 0.777 
 

The results of the exploratory data analysis of ECa data at different depths are given in Table 

3. The predicted ECa at 10 cm, 30 cm and 50 cm showed a moderate spatial variability (12-

60%) and the predicted ECa at 70 cm showed high spatial variability (> 60%) according to 

classification of CV proposed by Warrick and Nielsen (1980). The predicted ECa at depths 

of both 10 cm and 30 cm are almost the same. All the distributions of predicted ECa of 

different depths are positively skewed and platykurtic. 
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Table 3. Summary statistics for the predicted ECa (mSm
-1

) for different depth using 

inversion technique of EM4SOIL Inversion software 

 

Variable N Min. Max. Mean SD CV Skewness Kurtosis 

ECa(10cm) 2430 10 99.5 38.98 17.57 45.07 0.320 -0.658 

ECa(30cm) 2430 10 99.5 38.98 17.57 45.07 0.320 -0.658 

ECa(50cm) 2430 22 68.9 26.20 12.29 46.91 0.435 -0.381 

ECa(70cm) 2430 1.4 38.5 10.75 7.22 67.16 1.027 1.370 

 
The interpolated maps showing the spatial variability of ECa for different depths are given in 

the Figure 5. The patterns of spatial variability of all the maps are slightly different from one 

to another. However, the coefficient of variation for the inverted ECa has increased with the 

depth. It proved that deeper layers have inverted ECa with high variability due to smaller 

population means and relatively high standard deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The maps showing the spatial variability of ECa predicted by inversion 

technique at the depth of (a) 20 cm, (b) 40cm, (c) 60 cm and (d) 80cm 

 

 

The inverted ECa data at four depths showed strong correlations with corresponding EC 

(Table 2). The soil EC measurements showed a stronger correlation with estimated inverted 

a) b) 

c) d) 
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ECa than either ECaHCP or ECaPRP proving that relationships between sensor measured 

ECa and soil properties can be strengthened through the data inversion. However, inverted 

ECa data at four depths showed unexpected very poor correlations with other measured soil 

properties such as OM% (r < 0.36), clay% (r < -0.31), sand% (r >0.35), and pH (r < 0.43).  

 

 

CONCLUSION 

 

The proximal soil sensing revealed a strong spatial heterogeneity of apparent electrical 

conductivity of both in the surface and subsurface horizons of the calcic red latosol soil. 

Investigation of clay, sand, silt, OM%, pH and soil solution EC at four depth intervals at five 

sampling locations showed a strong variability of these soil properties in both vertical and 

horizontal directions. In Calcic Red Latosols, considerable variability of soil properties at 

short-scale can be expected. The prediction of soil properties such as Clay%, Sand%, OM% 

and pH by proximally sensed ECa have been concealed due to the dominant influence of soil 

solution EC. The overall results suggest that the proximal soil sensing has a high potential of 

mapping the salinity development in the calcic red Latosols in the Jaffna peninsula. The 

calculation of depth specific ECa by inverting ECaPRP and ECaHCP measurements 

indicated that these ECa data layers can be used to map the soil salinity development in 

different soil layers. Thus, proximal soil sensing using the DUALEM-1S sensor can be 

considered to be a highly potential tool for producing three dimensional maps of soil salinity 

in the Calcic Red Latosols.  
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