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ABSTRACT: A variety of approaches have been developed to estimate the aboveground 

biomass. However, methods differ in procedure, complexity and time requirement depending 

on the specific aim of these estimations. Remote Sensing (RS) is popular as a nondestructive 

method of biomass estimation since it can reduce the measurements and monitoring in the 

field to a considerable extent. This study focused to estimate above ground biomass of 

Horton Plains national park of Sri Lanka using ALOS PALSAR, IRS LISS III and Thermal 

bands of Landsat OLI images. There were 55 field sampling plots used and diameter at 

breast height, total tree height, and canopy cover percentage of all trees (dbh >10 cm), and 

slope and GPS locations of each sampling plots were collected. Previously developed 

relevant allometric equations were used to estimate biomass using DBH and height in each 

plot.   The relationship between backscatter coefficient of the ALOS PALSAR image, 

Normalized Difference Vegetation Index derived from IRS LISS III image and surface 

temperature generated form Landsat OLI thermal images were correlated with field 

estimated biomass to observe there correlation. It was not possible to obtain very strong 

correlations between these variables and AGB.  However, a positive linear correlation 

between AGB and NDVI was relatively high compared to other vegetation indices.  The 

amount of biomass calculated for three different correlations obtained for NDVI, 

Backscatter HH, Backscatter HV and land surface temperature are 41.76 t/ha, 38.9 t/ha, 

32.5 t/ha and 62.72 t/ha respectively. 

 

Keywords: Above ground biomass, remote sensing, forest, satellite images, carbon 

sequestration 

 

 

INTRODUCTION 

 

Terrestrial carbon sequestration in above ground woody biomass has received attention as an 

immediate attempt to mitigate global warming. Biomass estimates provide a means of 

calculating the amount of carbon dioxide that could be removed/fixed from the atmosphere 

by re-growing vegetation. Many attempts have been made to estimate vegetation biomass 

and use of existing forest inventory can be identified as a key method. Researchers have 

developed various methods for the quantification of sequestered carbon (Brown et al., 1989).  
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Traditional inventory of forest parameters based on fieldwork is often difficult, costly and 

time consuming to conduct in large areas.  Furthermore, complexity of forest structure and 

inaccessible nature of many tropical forests limits the feasibility of ground based inventory. 

Remote sensing is one of the feasible ways to acquire forest stand parameter information at a 

reasonable cost with an acceptable accuracy. Advanced new remote sensing techniques such 

as multi-sensor data fusion, increased spatial and spectral resolution and integration 

possibility with Geographical Information Systems (GIS) have made the remotely sensed 

data a primary source for many forestry applications. Among them, extraction of forest 

stands parameters through correlation or regression analysis to examine relationship between 

spectral response and structural factors of forest such as basal area, biomass, crown closer 

and vegetation density estimations (Namayanga, 2002) can be identified as very important.  

Observation and measurements by satellite based remote sensing have currently become one 

of the key sources of information in estimating AGB in tropical forest (Lu, 2006). A number 

of studies have evaluated remote sensing techniques for mapping of forests and forest stand 

parameters, including height, age, density, biomass and leaf area index, using optical remote 

sensing (Boyd et al., 1999; Foody et al., 2001, Foody, 2003; Lu, 2005; Steininger, 2000; 

Thenkabail et al., 2004). Vegetation indices are the most widely used approach (Foody, 

2003). Most indices depend on the relationship between red and near-infrared wavelengths to 

enhance the spectral contribution from green vegetation while minimizing contributions from 

the soil background, sun angle, sensor view angle, vegetation and the atmosphere (Huete et 

al., 1985; Tucker, 1979). However, vegetation indices have achieved only moderate success 

in tropical and subtropical regions where biomass levels are high, the forest canopy is closed, 

with multiple layering, and greater species diversity (Foody et al., 2001; Lu, 2005; Nelson et 

al., 2000).  

 

Difficulty to acquire cloud free images in tropical region is one of the key challenges in 

using optical remote sensing data under Sri Lankan condition. Space borne synthetic aperture 

radar (SAR) sensors such as the L-band ALOS PALSAR, the C-band ERS/SAR, 

RADARSAT/SAR or ENVISAT/ ASAR and the X-band Terra SAR-X instrument are active 

systems, transmitting microwave energy at wavelengths from 3.0 (X-band) to 23.6 cm (L-

band). The major advantage of SAR systems is their weather and daylight independency. In 

addition, the ability to penetrate into the volume of the object (canopies) which depend on 

the wavelength is another important character. The degree of penetration depends on the 

wavelength so the sensor’s ability to estimate biomass. The ability to measure biomass is 

additionally affected by the polarization and the incidence angle of the sensor, and land cover 

and terrain properties (Lu, 2005).  

 

Objectives 

 

This study attempts to estimate the above ground biomass in Horton Plains National Park 

(HPNP) using a vegetation index derived from IRS LISS III (2008) optical and Infra-red 

data; thermal infrared band of Landsat OLI (2013) and backscatter coefficient of ALOS 

PASLAR (HH, HV)  (2010) images. 

 

 

METHODOLOGY 

 

Study area and sampling sites 

 

Horton Plains National Park (HPNP) is situated 2200 m above mean sea level in the Nuwara 

Eliya District of the Central Province of Sri Lanka. The geographical location of the Horton 
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Plains is shown in Fig. 1. This study included the Thotupala mountain area also and the total 

area accounting to 3162 ha. The Climate of Horton Plains is almost similar to a wet Montane 

forest. Undisturbed old-growth forest is low in stature (15-20 m) and canopy trees are 

characteristically gnarled and twisted, bonsai, due to the lower temperatures and high winds.  

The canopy is dominated by species such as Calophyllum walkeri, Michelia nilagirica, 

Syzygium rotundifolium, S. revolutum, Elaeocarpus montanus, E. glandulifer, E. coriaceous, 

Ilex walkeri, Cinnamomum ovalifolium, Litsea ovalifolia and Photinia integrifolia. The forest 

understory is somewhat darker but easy to access due to the low density of seedlings, 

saplings and herbaceous plants. Many bryophytes, epiphytes (orchids, lichens, bryophytes 

and ferns) and filmy ferns grow on the stems and branches of trees (DWC, 2007). 

 

Fig. 1. Location map of the Horton Plains National Park   

 

Data, materials and other information 

 

The primary data used in the study was Landsat OLI (30
th

 August 2013), IRS LISS III (2008) 

and ALOS PALSR (HH, HV) dual polarization image (21
st
 June 2010), and Google Earth 

images were used for visual interpretation.  Demarcation and identification of sampling sites 

were carried out using 1:10,000 topographic maps of the Survey Department of Sri Lanka 

and differential GPS receiver was used to identify the geographical locations. Acquired 

images were originally geo-referenced to UTM (Universal Transverse Mercator) projection 

with the datum of WGS 84 (zone 44N).  
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Optical image classification  

 
Remote sensing image classification can be viewed as a joint venture of both image 

processing and classification techniques. Generally, the image classification in the field of 

remote sensing is the process of assigning pixels or the basic units of an image to classes. It 

is likely to assemble groups of identical pixels found in remotely sensed data into classes that 

match the information categories of user interest by comparing pixels to one another and to 

those of known identity (Lu, 2006). Supervised and unsupervised classification techniques 

were used to extract ground cover information from satellite images in the study area.   

 

Development of Vegetation Indices with Optical and Near Infrared Images 

 

Vegetation Indices (VIs) are combinations of surface reflectance at two or more wavelengths 

designed to highlight a particular property of vegetation. They are derived using the 

reflectance properties of vegetation. Each of the VIs is designed to accentuate a particular 

vegetation property.  More than 150 VIs have been published in scientific literature, but only 

a small subset has the substantial biophysical basis or has been systematically tested 

(http://www.exelisvis.com/). Among them, Normalize Difference Vegetation Index (NDVI), 

Ratio Vegetation Indices, Transformed VI, and Soil Adjusted vegetation index are widely 

used for estimation of biophysical parameters of the natural vegetation (Densheng et al., 

2004). NDVI is the widely used vegetation index than other VI’s for estimation of biomass 

(Panda, 2005) and this study also used NDVI calculated from IRS LISS III imagery.  

 

Normalize Difference Vegetation Index (NDVI)  

 
NDVI formula provides a combination of red and near infrared spectral reflectance from the 

vegetation canopy as shown in Equation 1  

 

NDVI = (NIR – Red) / (NIR + Red)   (Equation 1) 

 

Developing Land Surface Temperature using Thermal Infrared band of Landsat 8 OLI  

 

Land surface temperature (LST) is related to surface energy and water balance, at local 

through global scales, with principal significance for a wide variety of applications, such as 

climate change, urban climate, the hydrological cycle, and vegetation monitoring (Wan et al., 

2004). Landsat-8 was launched on 11 February 2013 and deployed into orbit with two 

instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the 

visual (VIS), near infrared (NIR), and the shortwave infrared (SWIR) spectral regions; and 

(2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the LWIR. The spatial 

resolution of TIRS data is 100 m (resampled into 30 m) with a revisit time of 16 days 

(Rozenstein et al., 2014). In this study, TIRS bands were used to develop the land surface 

temperature map to find the relationship between AGB and surface temperature (Rozenstein 

et el., 2014). 

 

Calculation of backscattering coefficient using ALOS PALSAR image 

 
Cloud-free synthetic aperture radar (SAR) has the potential to be an important data source 

for tropical forest mapping and there is no reported use of PALSAR data to generate biomass 

in Sri Lankan vegetation yet. Previous studies have shown that longer radar wavelengths 

(e.g. L-band SAR) are more suitable for the delineation of forest than shorter wavelengths 
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because of their greater penetration through the tree canopy (Baghdadi et al., 2009). The 

Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced 

Land Observing Satellite (ALOS) was launched by the Japan Aerospace Exploration Agency 

(JAXA) in January of 2006 and provides polarimetric radar images of the global land surface 

that have been used for forest mapping (Almeida et al., 2009). 

 

ALOS –PALSAR images with HH polarization and HV polarization were used to calculate 

the backscattering coefficient. The DN (Digital Number) of the HH and HV polarized 

images were converted into backscattering coefficient values using Equation 2 (Shimada et 

al., 2009). 

σ° = 10*log10 (DN
2
)-83.  (Equation 2)                          

σ° = Backscattering Coefficient    

 

The methodology of biomass estimation are summarized in the Fig. 2. 

 

Field data collection 

 
Ground survey was carried out to collect information on forest stand parameters of Horton 

Plains from 55 selected locations (plot size 30x30 m). Canopy cover percentage, ground 

cover percentage, Diameter of Breast Height (DBH), total tree height and ground opening 

areas were measured. Field data collection was done during 2011-2013 period.  

 

Estimation of biomass through field sampling  

 

There are many regression models available for the estimation of AGB developed by many 

scientists considering stem diameter, wood density and tree height ((Zanne et al., 2009); 

Chave et al. (2005); Bao Huy et al. (2012) and Brown and Lugo (1982)). The evaluation of 

above-ground carbon of woody plants was concentrated only to tree species which are 

having DBH of ≥10 cm, excluding lianas, and non-woody monocots. The following 

allometric regression model (Brown et al., 1989) (Equation 3) was applied for individual 

plants to convert the inventory data into the above ground biomass for 27 tree dominated 

plots. The allometric regression models were selected based on published literature 

considering their suitability to be used for tropical forests and biogeographic zone of the 

present investigation. 

 

AGB = 13.2579-4.8945(DBH)+0.6713(DBH)
2
-           (Equation 3) (Brown, 1989) 

 

AGB = above-ground tree biomass (t) DBH = tree diameter at breast height   

 

The selected allometric model is only applicable to estimate AGB in tree dominated plots in 

natural forests. Therefore, low dense vegetation (scrubland and grasslands having <10 cm 

DBH) areas AGB were estimated through the previously derived relationships as given in 

Equations 4 & 5. 

 

Grasslands y = -61+16300 (NDVI)     (Equation 4)  

(Foster et al., 2012) 

 

Y= above ground live biomass (kg) 

 

Scrublands   y = 9.17 + 3.00 Ln (NDVI) (Equation 5)  



Estimation of above ground biomass using remote sensing data 

 

 613

(Aranha et al., 2008) 

Y= above ground live biomass (t) 

 

Correlations between estimated biomass and NDVI, Land Surface Temperature (LST) 

and backscattering coefficient derived from satellite data   

 

The dense and moderately dense vegetation areas identified through image classification 

were subjected to estimation of biomass using standard allometric equations.  It was 

attempted to correlate these estimated biomass with the NDVI derived using IRS LISS III, 

land surface temperature derived from Landsat 8 OLI, and backscattering coefficient (HH, 

HV Polarization) derived from ALOS PALSAR data using Pearson’s correlation coefficient. 

 

 
 

Fig. 2. Flow diagram of the methodology 
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RESULTS AND DISCUSSION 

 

Development of land cover map of HPNP 

 

Initially, 12 land cover classes were derived using unsupervised classification of IRS LISS 

III (2008) satellite image and were further generalized to 4 classes with the aid of ground-

truth data and visual interpretation of Google Earth high resolution satellite images.  

Accordingly, four classes were identified as dense forest (850 ha), moderately dense 

vegetation (1,957 ha), low dense vegetation (554 ha) and grasslands (655 ha) (Fig. 3).  The 

dense vegetation is widely distributed in western and north western regions while grasslands 

are located in the middle part of the plain. Field sampling plots were placed using 

representative sampling technique in each land cover type. The overall accuracy of land 

cover map reached 78% and the highest accuracy was achieved in dense forest and 

grasslands.  

 

Biomass estimation through field sampling  

 

Out of the total plots (55), 27 plots came under dense and moderately dense vegetation 

(>10cm DBH) which were used to estimate AGB through an allometric equation (Brown, 

1989). The highest estimated AGB was observed as 81.68 t/ha in plot number 53 while 

lowest was observed in Plot 23 (4.599 t/ ha) due to the variation of number of trees, DBH, 

and height variations.  The mean AGB was calculated as 50.17 t/ha in HPNP. The AGB 

estimations made by Eskil et al. (2012) by forest inventory data has observed AGB as  43 – 

50 t/ha. A similar study conducted by Forest Carbon Asia Country Profile has estimated the 

same as 14.2 t/ha (Fig. 4) for montane forest regions of Sri Lanka (Chokkalingam & 

Vanniarachchy, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Land cover map of HPNP and surrounding area developed using unsupervised 

classification of IRS LISS III image  
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Fig. 4. Estimated AGB through field sampling data in tree dominated plots  

 

Relationship between estimated biomass with NDVI from IRS LISS III image 

 

The relationship between NDVI with estimated AGB is shown in Fig 6.  The relationship 

derived using NDVI and estimated AGB is given in Equation 6.   

AGB = 10,077*NDVI – 2,936.8    (Equation 6) 

 

Using Equation 6, AGB maps were prepared for the tree dominated dense and moderately 

dense vegetation. However, derived equation cannot be applied for the grassland and scrub 

dominated vegetation due to extreme over estimation of AGB.  

  

Table. 1. Correlations between estimated biomass with vegetation indices, Land 

surface temperature and backscattering coefficient derived from satellite 

data   

 

  NDVI HH HV LS T 

Pearson’s Correlation 0.712 0.587 0.441 -0.594 

Sig. (2-tailed) 0.000 0.001 0.021 0.001 

N (No of plots) 27 27 27 27 

 

Accordingly, the AGB in tree dominated areas were calculated as 41.76 t/ha which gave 17% 

underestimation comparative to the field estimated biomass.  Fig. 7 presents the AGB 

distribution in dense and moderately dense vegetation areas in Horton Plains. Some satellite 

driven models have been developed by many scientists to estimate above ground biomass for 

different vegetation types. Roy & Shirish (1996) used Landsat TM derived NDVI and 

Middle Infrared (MIR) Ratio to predict biomass content of natural forests in India and 

obtained 90% accuracy. Lue et al. (2003) found the relationship between multi-angular 
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satellite remote sensing (AVHRR and MODIS) and forest inventory data for carbon stock 

and sink capacity estimation. Similar study has been carried out to establish a relationship 

between forest stand parameters and Landsat TM spectral response in the Brazilian Amazon 

forest (Dengsheng et al., 2004) and found that tree height is strongly affected to the 

correlation between biomass and basal area distribution. In this study, for scrublands which 

were having DBH less than 10 cm and for the grasslands, AGB was estimated separately 

using direct use of NDVI without correlating with field sampling data (Foster et al., 2012 

and Aranha et al., 2008). Though the accuracy of this method is much lower than the field 

sampling technique, this method can be considered as quick and low cost way of estimating 

AGB. Distribution of Grassland and Scrubland AGB in HPNP are mapped in Fig. 8 (a and 

b).  
 
 

 
 

Fig. 6. Relationship between estimated AGB (trees dominated plots) with NDVI 

derived from IRS LISS III satellite image  

 

 
Fig. 7. Distribution of AGB with in dense and moderately dense vegetation in HPNP 

derived from NDVI of IRS LISS III data 
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Fig. 8. Distribution of AGB within grassland (a) scrubland (b) dominated vegetation 

in HPNP derived from direct use of NDVI  

 

Relationship between estimated biomass with backscattering coefficient of ALOS 

PALSAR image 

 

Backscattering coefficient derived from ALOS PALSAR data were correlated with estimated 

AGB in tree dominated plots. A weak negative correlation was observed between the two 

variables (Fig. 9). According to the derived equations, the average AGB (dense and 

moderately dense vegetation) calculated form HH polarized image was 38.9 t/ha and from 

HV polarized image was 32.5t/ha. However, these values are not very reliable since the 

relationship between backscatter and AGB is weak. 

 
a 

b 
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Fig. 9. Relationship between estimated AGB (trees dominated plots) with 

Backscattering coefficient derived from HH and HV polarized ALOS PALSAR 

images. 

 

Relationship between estimated biomass with land surface temperature derived from 

Landsat 8 TIRs band 

 

The derived land surface temperature values were correlated with the estimated biomass and 

vegetation types to investigate any possible relationship. Accordingly, a poor negative 

correlation was observed between the two variables with a R
2
 value of 0.35 (Fig. 10).  The 

AGB calculation was carried out with the derived relationship (AGB = - 634.58 LST 

+14,502) and is shown in Fig. 11. According to the relationship, it is evident that when the 

biomass content is high, the surface temperature of the vegetation areas are low indicating a 

good canopy cover. The average AGB of dense and moderately dense vegetation were 

estimated as 62.72 t/ha which is a 21% over estimation than the field estimated biomass. 

However, the development of the biomass estimation map was a challenging task due the 

variation of surface temperature at a rate of ± 6 
0
C. The temperature distribution among the 

land cover classes is shown in Fig. 11. 
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Fig. 10. Relationship between land surface temperature generated from Landsat TIR 

band 10 and estimated trees dominated plot biomass of HPNP.  

 
Fig. 11. Land surface temperature distribution in HPNP by Landsat TIR band 10  

 

Accuracy Assessment  
 

Accuracy assessment was done by obtaining field biomass estimations from another 8 post 

random sampled plots representing dense and moderately dense vegetation (Fig. 12). The 

overall accuracy of AGB estimation using NDVI was identified as 72.3 %. With 

backscattering coefficient of HH polarization, the accuracy was identified as 71% and with 

HV polarization it was 68% comparative to the field estimated biomass. 
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Fig. 12. Distribution of estimated AGB accuracy derived from NDVI, HH, and HV  

 

 

CONCLUSIONS 

 

Three remote sensing based parameters were used to explore a correlation between above 

ground biomass estimated in dense and moderately dense vegetation using field sampling 

techniques.  The study identified that NDVI is the most suitable vegetation index to estimate 

AGB in dense and moderate dense vegetation areas. A positive linear correlation was 

observed between AGB and NDVI. Though there is a positive linear correlation exists 

between backscattering coefficient and AGB, the relationship was not strong. A negative 

linear relationship was observed between AGB and the land surface temperature. The 

amount of biomass estimated for dense and moderately dense vegetation for the HPNP using 

NDVI was 41.76 t/ha, TIRS was 62.72 t/ha, and HH polarized image was 38.9 t/ha add HV 

polarized image was 32.5 t/ha. This study observed a weak negative relationship between 

land surface temperature from Landsat 8 TIRS with estimated AGB.  
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