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ABSTRACT: In model building, the model with appropriate number of parameters needs 

to be identified. Thus, a variety of information criteria have already been developed, each 

with a different background to handle this challenge. The mostly used information criteria 

are the Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC), and 

Hannan and Quinn Information Criterion (HQ). However, available literature and the 

preliminary analysis done by authors indicated that when selecting the appropriate model, 

these information criteria usually lacked uniformity. Thus, in this study, an information 

criterion that serves as a unifier to the three commonly used criteria; AIC, SIC and HQ is 

proposed. The penalties of these three information criteria are considered as a linear 

function. Simulations were conducted on the performance of the proposed information 

criterion (PIC) together with the three conventional information criteria using nine models 

and seven different sample sizes. The results revealed that the proposed information criterion 

(PIC) performed better than the AIC, SIC and HQ with respect to the overall performance in 

choosing the true model. The performance of PIC increased as sample size increased. 

However, PIC turns to under fit, when the true model is not selected. When sample size is 

large, PIC is asymptotically robust with respect to single processes, Autoregressive (AR) and 

Moving Average (MA). Thus, the proposed information criterion is recommended when 

selecting the order of a univariate time series. 

 

Keywords: Information criteria, model selection, robust and model size, sample size 

 

 

INTRODUCTION 

 
In model building, the focus is that, there is information in the observed data, and we want to 

express this information in a compact form through a “model”, (Burnham and Anderson, 

2002). Thus, the goal of model selection is to attain a perfect 1-to-1 translation such that no 

information is lost in going from the data to a model of the information in the data. However, 

such models (true models) do not exist in the real world. Thus, we can say that models are 

only approximations. However, we can attempt to find a model for the data that is "best” or 

close to the true model (the model loses as little information as possible). This thinking leads 

directly to Kullback–Leibler information (K-L). Thus, we wish then to select a model that 

minimizes K-L information loss as the best model for inference. 
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According to Mees (1993) and Burnham et al., (2002), information criteria are used to 

identify the model that minimizes K-L information loss. These information criteria are based 

on the K-L discrepancy, which is a class of loss function. The K-L discrepancy between two 

models f and g, I (f, g), can be written equivalently as: 

 

( ) ( ) ( ), ( ) log ( ) ( ) log g( / ) ,I f g f x f x dx f x x dxθ= −∫ ∫                                 1 

 

The term on the right is a statistical expectation with respect to f (the true model). Thus, the 

K-L distance in Equation 1 can be expressed as a difference between two statistical 

expectations; 

 

( ) ( ) ( ), log ( ) log g( / ) ,f fI f g E f x E x θ   = −                               2 

 

each with respect to the distribution f. The first expectation of Equation 2 is a constant that 

depends only on the unknown true distribution (Burnham and Anderson, 2002). When the 

second expectation of Equation 2 is computed, this ( ),I f g  could be estimated up to a 

constant C; 

( ) ( ), log g( / ) ,fI f g C E x θ = −                                       3
 

The term ( ),I f g C −   is a relative directed distance between f and g. Thus, 

( )log g( / ) ,fE x θ   becomes the quantity of interest for selecting a best model. This is to 

say, the model with the minimum I (f, g), is considered as the best model. 

The information criteria in this study uses log-likelihood function as the K-L information. 

Generally, information criteria have two main parts; it is of the form; 

 

( , )IC Deviance p n k= +
                                           4 

 

Here, the deviance is the loss function, which assesses the quality of the model to the data. P 

(n, k) is the model complexity, which penalize the model order and grows as the number of 

parameters increase and it is dependent on sample size (n) and the number of fitted 

parameters (k). 

 

A variety of information criteria have been developed for this purpose. The information 

criteria that are of interest to this study are Akaike Information Criterion, AIC (Akaike, 

1974), Schwarz Information Criterion, SIC (Schwarz, 1978) and Hannan and Quinn 

Information Criterion, HQ (Hannan and Quinn, 1979).  

 

All these criteria have relative advantages depending upon the situation in which they are 

used. However, in the available literatures and our preliminary analysis, a simple comparison 

of the AIC, SIC and HQ shows that, they often disagree and when they disagree, the AIC 

would choose the largest, the SIC the smallest and the HQ the model in between. Thus, there 

is little uniformity in deciding the model size of a time series analysis. Here, we propose an 

information criterion that minimizes this challenge. The basis of this proposed information 

criterion is that, its takes into consideration the average of penalty terms of the AIC, SIC and 

HQ. The proposed information criterion is validated with the conventional information 

criteria by studying the asymptotic and non-asymptotic properties of these criteria. 
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METHODOLOGY 

 

Proposed information criterion (PIC) 

 

The proposed information criterion, as indicated below combines the strength of AIC, SIC 

and HQ. The AIC is expressed as: 

ˆ2 ln ( )AIC L mθ= − +
                                                   5

 

where m = 2k. The SIC can also be written as: 

ˆ2 ln ( )SIC L yθ= − +
                                                  6

 

where y = kln(n). The HQ is expressed as: 
ˆ2 l n ( )H Q L xθ= − +                                                7

 

Where x = 2kln ln(n); ( )ˆL θ  is the likelihood function of the fitted model, ( )ˆ2 ln L θ−  is 

the deviance, m, y, x are the penalty for AIC, SIC and HQ, respectively, k = number of free 

parameters in the model and n = number of observations. (McQuarrie and Tsai, 1998; Box 

and Jenkins, 1994). 

 

Thus, the proposed criterion, PIC, can be defined as: 

 

                          
( )ˆ2 lnL ( ) / 3PIC m y xθ= − + + +

                                                              
8 

          
 

 

The penalty of the proposed criterion can be expressed in the following form: 

 

[ ](2 ln( ) 2 ln ln( )) / 3penalty k n n ϖ= + + =
                            9

 

Thus, the proposed criterion can be simply written as: 

 

( ) [ ]

( )

ˆ2 lnL (2 ln( ) 2 ln ln( )) / 3

ˆ2 lnL

PIC k n n

PIC

θ

θ ϖ

= − + + +

= − +
                         10 

 

Here, the penalty term of the proposed information criterion, ϖ , is the average of the penalty 

terms of AIC, SIC and HQ. The asymptotic properties among penalty terms are indicated 

below: 

 

a) As n → ∞, the penalty terms m → 2k (constant); y → ∞; and x → ∞. Hence, ϖ→∞. 

This indicates that the ϖ (penalty of PIC), behaves like SIC and HQ when the 

sample size, n, is very large. 

 

b) As n → 0, the penalty terms m → 2k (constant); y → 0; and x → 0. Hence, ϖ→2k. 

This means, the ϖ (penalty of PIC), behaves like AIC when the sample size, n, is 

very small. 
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Efficiency and consistency 

 

Let { }E Yµ = . Let f be the true model and g be the model selected as the best model using 

an information criterion. The selection criterion is said to be asymptotically loss efficient if 

convergence in probability (Shao, 1997) is as given below. 

 

  lim ( , ( ) )
1

( , ( ) )

L g
n

L f

µ µ

µ µ
 → ∞ =                                  11

  

                             The selection criterion is said to be consistent if lim

0Pr{ ) 1n g f→∞ = = . The terms 

over-fitting and under-fitting were defined as two ways based on either consistency or 

efficiency (McQuarrie and Tsai, 1998). Using efficiency, over-fitting is defined as choosing 

a model that has more variables than fo. Under-fitting is defined as choosing a model with too 

few variables compared to fo.  

 

Simulation Study for the proposed information criterion 

 
In order to validate the performance of the proposed information criterion with other 

conventional information criteria, a simulation study was conducted on different model 

structure of univariate time series processes. 

 

Precisely, nine simulated datasets were generated from AR(p),  p = 1, 2,3; and MA(q),  q= 1, 

2, 3; and ARMA (p, q), p, q = 1, 2, 3; with 10 replicates and seven different sample sizes. 

The set of these sample sizes is to examine the influence of sample size on the ability of an 

information criterion to correctly select the true model as sample size increases. 

  

Here, the underlined models or true models of the datasets are known, since the datasets were 

generated from true models. Thus, the generated datasets in each case are fitted to four (4) 

different models including the true model of which the datasets were generated. In our study, 

for the AR(p) dataset, we fitted four models i.e., AR(1), AR(2), AR(3) and AR(4); and for 

the MA(q) datasets; MA(1), MA(2), MA(3) and MA(4) were fitted; while ARMA(1,1), 

ARMA(2,2), ARMA(3,3) and ARMA(4,4) were fitted to the ARMA(p, q) datasets. These 

fitted models were selected so that, we can study the non-asymptotic properties of under-

fitting and over-fitting. For each dataset, the best fitted model was identified by the minimum 

criterion estimate of the four models. The model selected for each criterion per dataset was 

then recorded and the frequency of a criterion selecting the correct model or true model was 

tallied, since we know the model that generated the dataset. The criterion which selected the 

correct model most often was then considered the best criterion for the analysis. 

 

 

RESULTS AND DISCUSSION 

 

Measuring the stability of information criteria 

 

The results of the simulation study indicating the models, different sample sizes and IC 

performances are reported in the respective tables. The tabulated results are the percentage or 

probability of correctly selecting the true model by the criterion. For clarity of 

interpretations, we define five subjective performance capability categories. These categories 
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show the ability of a criterion to correctly identify the true model from which the specific 

data was generated. 

 

The first performance rating is defined as “very good” and the assigned percentage is [90 – 

100] of times a criterion selects the correct model. The second rating is “good” and the 

assigned percentage is [75% - 90%]. The third performance rating is “acceptable” and the 

assigned percentage is [60 – 75%]. The fourth rate is “poor” with the assigned percentage as 

[45% - 60]. The fifth rate is “unacceptable” with assigned percentage as [0 – 45%]. 

 

Non-asymptotic properties 

 

Here, the focus is to examine; (1) the performance of the individual information criterion, 

with respect to the probability that the information criterion selects the true model; (2) the 

overall performance of the four information criteria considered in this study. This is done by 

ranking the score of the frequency of an information criterion selecting the true model with 

respect to the weights assign to the performance capabilities categories; (3) the performance 

of the information criteria as model order increases; (4) under-fitting and over-fitting of 

information criteria. 

 

Performance of individual information criterion 

 
Here, the performance of AIC, SIC, HQ and the proposed information criterion, (PIC), 

according to the simulation study are evaluated. Table 1 gives the percentage of selecting the 

true model using AIC. In the autoregressive processes, AIC performance gets better as 

sample size increases. However, it's performance in the moving average processes is not 

consistent as sample size increases. It is obvious that, AIC performed relatively well in both 

the autoregressive and moving average processes. However, its performance with respect to 

the mixed processes was not recommendable except when the sample size, n = 1200. 

 

Table 1. Percentage of selecting the true model using AIC 

 

Sample Size  

Model 

5 15 25 45 100 500 1200 

AR(1) 80 80 80 80 90 90 100 

AR(2) 30 30 50 60 80 80 90 

AR(3) 50 50 60 60 90 90 100 

MA(1) 30 40 40 60 40 60 90 

MA(2) 30 40 40 30 70 70 90 

MA(3) 10 10 40 30 50 90 100 

ARMA(1,1) 40 60 80 80 50 60 90 

ARMA(2,2) 10 20 20 20 50 70 90 

ARMA(3,3) 0 0 10 20 0 60 80 

 

Table 2 gives the percentage of selecting the true model using SIC. 
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Table 2. Percentage of selecting the true model using SIC 

 

Sample Size 
Model 

5 15 25 45 100 500 1200 

AR(1) 80 90 100 100 100 100 100 

AR(2) 10 20 40 80 100 100 100 

AR(3) 20 30 30 50 80 100 100 

MA(1) 50 60 70 100 90 100 100 

MA(2) 10 30 40 30 70 100 100 

MA(3) 10 10 20 10 20 100 100 

ARMA(1,1) 60 70 90 100 90 100 100 

ARMA(2,2) 10 10 0 20 40 100 100 

ARMA(3,3) 0 0 0 0 0 60 100 

The performance of SIC was excellent in AR(1) for all sample sizes but performed poorly in 

AR(2) and AR(3) with small sample sizes. However, SIC performance was better as sample 

size increased. Thus, SIC performance was consistent as sample size increased; and better 

with large sample sizes. It is obvious that SIC performance decreased as the order of both 

single and mixed processes increases. The percentage of selecting the true model using HQ 

criteria is given in Table 3. 

 

Table 3. Percentage of selecting the true model using HQ criteria 

 

Sample Size 
Model 

5 15 25 45 100 500 1200 

AR(1) 70 80 80 90 100 100 100 

AR(2) 10 30 50 80 90 100 100 

AR(3) 50 60 60 60 80 100 100 

MA(1) 30 40 40 80 60 80 100 

MA(2) 30 40 40 30 70 80 100 

MA(3) 10 10 30 20 40 100 100 

ARMA(1,1) 50 60 80 90 90 100 100 

ARMA(2,2) 10 20 20 50 40 100 100 

ARMA(3,3) 0 0 0 0 10 70 100 

 

HQ performed very well with very large sample size in all models. It is obvious that HQ 

performed well when the order of a process is small. The performance of HQ is consistent 

with respect to the autoregressive processes. The performance of HQ is unacceptable for the 

ARMA(3,3) with small sample size. However, HQ performed relatively well, overall. The 

percentage of selecting the true model using PIC is given in Table 4. The performance of PIC 

was better in AR(1) for all sample sizes but performed poorly in AR(2), AR(3), MA(3), 

ARMA(2,2) and ARMA(3,3) with small sample sizes, n = 5 and 15. Generally, PIC 

performance was better as sample size increases. Thus, PIC performance was consistent as 

sample size increases  in AR(1), AR(2), AR(3), MA(1), MA(2) and ARMA(1,1). In other 

words, PIC does very well with large sample sizes, but is not consistent as model or process 

order increases. 

 

 



Model Selection in Univariate Time Series Analysis 

 309 

 

 

 

Table 4. Percentage of selecting the true model using PIC 

Sample Size 
Model 

5 15 25 45 100 500 1200 

AR(1) 90 90 90 100 100 100 100 

AR(2) 10 30 50 80 90 100 100 

AR(3) 20 40 60 70 80 100 100 

MA(1) 30 50 50 90 60 90 100 

MA(2) 40 50 40 30 70 90 100 

MA(3) 10 10 20 30 40 100 100 

ARMA(1,1) 60 70 80 90 90 100 100 

ARMA(2,2) 10 20 20 50 40 100 100 

ARMA(3,3) 0 0 0 0 10 60 100 

 

Overall performance of information criterion 

 
A weighted ranking scale based on the performance categories was proposed in order to 

compare the overall performance of each criterion with respect to other criteria. The overall 

performance rating summary of Information criteria is given in Table 5. A decreasing weight 

was assigned to a decreasing performance category. At each criterion, the number of times 

that the criterion occurred with respect to the five categories is multiplied by their respective 

weights. The resultant is summed across categories as the overall performance score of the 

criterion. Then these scores are ranked with a rank of 1 given to the highest score. 

 

In terms of overall relative performance of criteria, the PIC is ranked as the highest 

performed information criterion with respect to the probability of selecting the true model. 

The second performed information criterion is the SIC; followed by HQ and lastly AIC. 

Thus, we can say that the proposed information criteria (PIC) can consistently select the true 

model than most of the conventional methods. Therefore, in terms of correctly selecting the 

true model of an observed data, we recommend the use of the PIC. 

 

Table 5. Overall performance rating summary of information criteria 

 

4 3 2 1 0 Weight 

(wi) Performance Capabilities Categories 

Criterion V. Good Good Acceptable Poor Unacceptable 

 

Score  

(#) 

 

Rank 

AIC 13 9 11 6 24 107 4 

SIC 27 3 6 2 25 131 2 

HQ 20 8 8 4 23 124 3 

PIC 26 3 7 5 22 132 1 

# 
i is c o r e w ξ= ∑

, where 
iξ
 is the frequency of a criterion with respective to performance 

capabilities categories. 

 

Performance of information criteria as the order of the processes increases 
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In this section, we assess the performance of information criteria as the order of processes 

increases. The performance of criteria as model order increases is given in Table 6.  We 

consider two sample sizes, n=25 (small sample) and n=45 (large sample) for each model, the 

highest performing criterion is shaded. 

 

It is obvious that, the performances of information criteria are not consistent as the order 

increase in all the models. However, when sample size n=25, the AIC has the highest number 

of best performance (given by the 6 shaded values) across the 9 models. When sample size 

n=45, PIC has the highest number of high performance (the 6 shaded values) across the 9 

models, which was followed by the SIC (recording 5 shaded values). Fig. 1.Shows the 

performance of different criteria as model order increases for n=25. 

 

 Table 6. Performance of criteria as model order increases 

Model  

AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) ARMA(1,1) (2,2) (3,3) 

N=25 

AIC 80 50 60 40 40 40 80 20 10 

SIC 100 40 30 70 40 20 90 0 0 

HQ 80 50 60 40 40 30 80 20 0 

PIC 90 50 60 50 40 20 80 20 0 

N=45 

AIC 80 60 60 60 30 30 80 20 20 

SIC 100 80 50 100 30 10 100 20 0 

HQ 90 80 60 80 30 20 90 50 0 

PIC 100 80 70 90 30 30 90 50 0 
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Fig. 1. Performance of criteria as model order increases for n=25 

When sample size, n=25, all information criteria performed well at both AR (1) and ARMA 

(1,1). It is obvious that, SIC performed poorly at high order of mixed models or processes; 

and AR (2) and AR (3) processes. However, SIC performed well at AR (1), MA (1) and 

ARMA (1,1). Thus, with small sample sizes, SIC does well at smaller order of processes. 

PIC did not perform well at MA (2), MA (3) and ARMA (3,3). However, PIC performed 

well at AR (2), AR (3), ARMA (1,1) and ARMA (2,2). Figure 2 gives the performance of 

different criteria when model order increases for n=45. 

 

 

Fig. 2. The performance of criteria as model order increases for n=45 
 

When sample size, n=45, all information criteria performed well at both AR(1) and 

ARMA(1,1). It is obvious that, SIC performed poorly at high order of mixed models or 

processes; AR(3) and MA(3) processes. However, SIC performed well at AR(1), MA(1) and 

ARMA(1,1). Thus, with large sample sizes, SIC does well at smaller order of processes. PIC 

did not perform well at MA(2), MA(3) and ARMA(3,3). However, PIC performed well at 

AR(2), AR(3), MA(1), MA(2), MA(3), ARMA(1,1) and ARMA(2,2).  

 

Under-fitting 

 
We examine the percentage or the probability of an information criterion to choose a model 

with few parameters compared to the true model. Our interest is to identify which 

information criterion has the possibility of under-fitting under a given situation. 

 

We follow the same weight assigned to the performance capabilities categories. However, 

we define different performance capability categories this time. The categories are as follow: 

[0-10%] is very good; [20-30%] is good; [40-50%] is acceptable; [60-69%] is poor; [70-

100%] is unacceptable. The results are presented in Table 7. 
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Table 7. Under-fitting performance rating summary of information criteria 

 

4 3 2 1 0 Weight (wi) 

Performance Capabilities Categories 

Criterion V. 

Good 

Good Acceptable Poor Unacceptable 

 

Score 

(#)  

 

Rank 

AIC 26 5 5 3 6 132 1 

SIC 21 4 4 3 13 107 4 

HQ 23 9 3 2 9 127 2 

PIC 22 8 4 2 8 122 3 

 

AIC is ranked as the criterion which has the lowest probability of under-fitting a true model, 

followed by HQ. Thus, SIC and PIC turn to underfit more than the AIC and HQ when they 

do not select the true model. 

 

Over-fitting  

 
We examine the percentage or the probability of an information criterion to choose a model 

that has more parameters compared to the true model. Our interest is to identify which 

information criterion has the possibility to over-fit. 

 

We follow the same weight assigned to the performance capabilities categories. However, 

we defined different performance capabilities categories due to our interest at this time. The 

categories are as follow: [0-10%] is very good; [20-30%] is good; [40-50%] is acceptable; 

[60-69%] is poor; [70-100%] is unacceptable. The results are presented in Table 8. 

 

Table 8. Over-fitting performance rating summary of information criteria 

 

4 3 2 1 0 Weight (wi) 

Performance Capabilities Categories 

Criterion V. 

Good 

Good Acceptable Poor Unacceptable 

 

Score 

(#) 

 

Rank 

AIC 16 17 8 4 0 135 4 

SIC 39 5 1 0 0 173 1 

HQ 29 11 3 2 0 157 3 

PIC 34 8 3 0 0 166 2 

 

SIC is ranked as the criterion which has the lowest probability of over-fitting, when it does 

not select the true model, followed by PIC. Thus, AIC and HQ turn to over-fit more than the 

SIC and PIC, when they do not select the true model. 

 

Asymptotic properties 

 
Here, the focus is to examine; (1) the performance of the information criteria with respect to 

increase in the sample sizes; and (2) the asymptotic robustness of the proposed information 

criterion, (PIC). 



Model Selection in Univariate Time Series Analysis 

 313 

 

 

Performance of information criteria as sample size increases 

 

In other to examine the information criteria performance as sample size increases, we took 

the average performance of all the nine (9) models in each case of the four (4) information 

criteria. We then ranked the average performance of each information criteria with respect to 

each sample size. In each sample size, the highest performed information criterion is shaded. 

The results are presented in Table 9. AIC performed better when sample size is small. 

However, it performed relatively poor when sample size is large. Its individual average 

performance increases as sample size increases. SIC, relatively performed poorly when the 

sample size is small, but performed excellently well when sample size is small. HQ relative 

average performance is not consistent with sample size increase. However, it does well when 

sample is very large.  PIC performed well as the sample sizes increased. Its relative rank 

performance is second. 

 

Table 9.  Average performance of information criteria as sample size increases 

 

Sample Size Criterion 
5 15 25 45 100 500 1200 

AIC 31.1 36.7 46.7 48.9 57.8 74.4 92.2 

SIC 27.8 35.6 43.3 54.4 65.6 95.6 100 

HQ 28.9 37.8 44.4 55.6 64.4 92.2 100 

PIC 30 40 45.6 60 64.4 93.3 100 

 

We represent this information graphically. The performance of IC as sample size increases is 

given in Fig. 3. 

 

 

Fig. 3. Performance of IC as sample size increases 

 

It is obvious that, when sample size is less than 45, the AIC performed better but its 

performance was always poor when the sample size is greater than 25. The performance of 
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SIC is outstanding when the sample is large. The performance of PIC was good. Figure 4 

shows the performance of the information criteria (IC) as sample size increases. 

 

 

Fig. 4. The performance of IC as sample size increases 
 

The PIC was placed first or second when sample size was less than 45. However, for n=45 

the PIC was placed first. The PIC closely followed the SIC when sample size increased from 

100 to 1200. The AIC was the least performed criterion when sample size is greater than 25. 

It is obvious that PIC and SIC performed better as the sample size increased asymptotically.  

 

Robust nature of the proposed information criterion, (PIC) 

 
The standard normal error or innovation of a series is N(0,1), to examine the robustness of 

the proposed criterion, we simulated two additional datasets under AR(1), MA(1) and 

ARMA(1,1) by varying the variance of the error or innovation, [N(0,2) and N(0,3)]. The 

focus is to identify if the proposed information criterion selects the true model in these three 

scenarios. Table 10 shows the robustness of the proposed IC for different error terms. 

 

Table 10. Robustness of the proposed information criterion for different error terms 

 

Sample Sizes Model 

15 30 45 1200 

AR(1) 2 1σ =  

(1,0,0) 42.34 89.49 136.82 3323.73 

(2,0,0) 44.39 91.79 139.45 3328.04 

(3,0,0) 46.47 92.40 139.65 3331.54 

 2 2σ =  

(1,0,0) 70.64 131.25 199.42 4987.45 

(2,0,0) 72.59 133.57 202.05 4991.78 

(3,0,0) 70.45 134.20 202.29 4995.27 

 2 3σ =  

(1,0,0) 82.88 155.65 235.98 5960.65 

(2,0,0) 84.83 157.97 238.63 5964.96 
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(3,0,0) 82.73 158.60 238.89 5968.46 

MA(1) 2 1σ =  

(0,0,1) 47.90 88.21 120.32 3490.83 

(0,0,2) 48.59 90.57 123.15 3492.46 

(0,0,3) 47.33 89.40 121.39 3496.74 

 2 2σ =  

(0,0,1) 68.78 129.89 182.90 5154.49 

(0,0,2) 69.39 132.23 185.67 5156.12 

(0,0,3) 68.47 131.32 184.15 5160.40 

 2 3σ =  

(0,0,1) 80.98 154.27 219.46 6127.65 

(0,0,2) 81.57 156.57 222.25 6129.28 

(0,0,3) 80.77 155.74 220.79 6133.56 

 

ARMA(1,1) 

2 1σ =  

(1,0,1) 49.91 103.51 140.17 3454.50 

(2,0,2) 48.50 99.84 145.48 3461.70 

(3,0,3) 53.16 103.19 136.25 3468.47 
2 2σ =  

(1,0,1) 66.43 139.11 195.47 5113.02 

(2,0,2) 66.78 134.66 201.04 5120.14 

(3,0,3) 70.98 138.95 192.23 5127.07 
2 3σ =  

(1,0,1) 77.47 161.71 230.07 6085.12 

(2,0,2) 78.50 156.98 235.70 6092.32 

(3,0,3) 79.56 161.63 227.19 6098.97 

 

It is obvious that, as sample size approaches infinity, PIC correctly select the true model in 

the AR (p) and MA (q) processes. In context, as N(30) → ∞, PIC is asymptotically robust, in 

selecting the true model, with respect to autoregressive and moving average processes. Thus, 

PIC is asymptotically robust in selecting the true model under the autoregressive and moving 

average processes. However, this robustness does not work with respect to the mixed 

processes (ARMA), except when sample size is very large, say n = 1200. 

 

 

CONCLUSION 

 
We have investigated four information criteria including the proposed information criterion 

using 9 different models and 7 different sample sizes. 

 

The results revealed that the proposed information criterion performed better than the SIC, 

AIC and HQ with respect to the overall performance in choosing the true model. The 

performance of PIC increased when sample size increased. However, PIC turns to under-fit, 

when the true model is not selected. When sample size is large, PIC is asymptotically robust 

with respect to single processes, AR(p) and MA(q). Thus, we recommend the proposed 

information criterion when selecting the order of a univariate time series. 
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