CHARACTERIZATION OF SRI LANKAN ACID TEA SOILS IN RELATION TO SOIL K DYNAMICS AND K UPTAKE BY TEA (CAMELLIA SINENSIS. L)

Ву

GAMINI PERERA GUNARATNE

Thesis

Submitted in partial fulfilment of the requirements

for the degree of

MASTER OF PHILOSOPHY

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE

of the

C 633.42 G75

AGRICULTURE LIBRARY UNIVERSITY OF PERADENIYA

UNIVERSITY OF PERADENIYA

SRI LANKA

50521

March, 2000

ABSTRACT

Sri Lankan acid tea soils from 6 different agro-ecological regions were cropped with two sowings of perennial rye grass (Lolium perenne) adopting a glasshouse pot experiment without adding any Potassium until growth virtually ceased. Potassium uptake and corresponding changes in initial soil K properties and adsorption/desorption properties were studied as tools for classification of Sri Lankan acid tea soils in relation to K applications.

The K concentrations in the soil solutions of all six soils had dropped to minimum level after 3 months of cropping with rye grass despite the wide range of initial soil solution concentrations.

Intensive cropping reduced the exchangeable K of all soils to a range of 8 to 21 mg kg⁻¹ at the 8th cut compared to initial exchangeable K range of 60 to 116 mg kg⁻¹ soil. The K uptake was correlated with the exchangeable K by the regression.

Tea soils used could be divided into two main groups according to their Potential Buffering Capacities (PBC^K). First group consisting of higher PBC^K values having constant availability of K over a longer period and 2nd group having lower PBC^K values which need frequent fertilizations. Sub-divisions of soils were

i

which need frequent fertilizations. Sub-divisions of soils were also suggested depending on the presence of K-specific-sites and available K as well.

The curved portions of the Q/I isotherms of soils indicated the presence of some specific sites for K ions in Ratnapura, Hantane and Talawakelle as against the in Passara, Deniyaya and Kottawa soils.

 ΔK^0 was poorly correlated with plant K uptake by the regression.

Finally, Sri Lankan acid tea soils were divided into 5 groups according to their K dynamics and plant K uptake.It is worthy to consider these groupings also in arriving at K-recommendations for tea in Sri Lanka.